Properties

Label 18.14.2415964169...8133.1
Degree $18$
Signature $[14, 2]$
Discriminant $3^{18}\cdot 7^{14}\cdot 13\cdot 29^{4}$
Root discriminant $33.21$
Ramified primes $3, 7, 13, 29$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T766

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-64, 384, -384, -1800, 4320, -804, -5795, 5511, -21, -3408, 2721, -387, -722, 525, -147, -12, 27, -9, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^17 + 27*x^16 - 12*x^15 - 147*x^14 + 525*x^13 - 722*x^12 - 387*x^11 + 2721*x^10 - 3408*x^9 - 21*x^8 + 5511*x^7 - 5795*x^6 - 804*x^5 + 4320*x^4 - 1800*x^3 - 384*x^2 + 384*x - 64)
 
gp: K = bnfinit(x^18 - 9*x^17 + 27*x^16 - 12*x^15 - 147*x^14 + 525*x^13 - 722*x^12 - 387*x^11 + 2721*x^10 - 3408*x^9 - 21*x^8 + 5511*x^7 - 5795*x^6 - 804*x^5 + 4320*x^4 - 1800*x^3 - 384*x^2 + 384*x - 64, 1)
 

Normalized defining polynomial

\( x^{18} - 9 x^{17} + 27 x^{16} - 12 x^{15} - 147 x^{14} + 525 x^{13} - 722 x^{12} - 387 x^{11} + 2721 x^{10} - 3408 x^{9} - 21 x^{8} + 5511 x^{7} - 5795 x^{6} - 804 x^{5} + 4320 x^{4} - 1800 x^{3} - 384 x^{2} + 384 x - 64 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[14, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2415964169284813676020898133=3^{18}\cdot 7^{14}\cdot 13\cdot 29^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.21$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 7, 13, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{5}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{9} - \frac{1}{8} a^{6} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{10} - \frac{1}{8} a^{7} + \frac{1}{8} a^{4}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{16} a^{11} + \frac{1}{16} a^{10} - \frac{1}{16} a^{8} - \frac{3}{16} a^{7} - \frac{1}{4} a^{6} + \frac{1}{16} a^{5} + \frac{3}{16} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{15} - \frac{1}{16} a^{13} - \frac{1}{16} a^{12} + \frac{1}{16} a^{10} - \frac{1}{16} a^{9} + \frac{1}{16} a^{7} - \frac{3}{16} a^{6} - \frac{1}{4} a^{5} - \frac{1}{16} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{1221664} a^{16} - \frac{1}{152708} a^{15} - \frac{13855}{1221664} a^{14} - \frac{55583}{1221664} a^{13} + \frac{15469}{305416} a^{12} - \frac{107165}{1221664} a^{11} + \frac{101573}{1221664} a^{10} + \frac{35827}{305416} a^{9} - \frac{41057}{1221664} a^{8} + \frac{111211}{1221664} a^{7} + \frac{4224}{38177} a^{6} + \frac{8189}{1221664} a^{5} + \frac{44255}{610832} a^{4} - \frac{16330}{38177} a^{3} - \frac{72619}{152708} a^{2} - \frac{34395}{76354} a + \frac{8123}{38177}$, $\frac{1}{15881632} a^{17} - \frac{1}{7940816} a^{16} - \frac{24563}{1221664} a^{15} + \frac{319411}{15881632} a^{14} - \frac{212165}{7940816} a^{13} + \frac{55555}{1221664} a^{12} + \frac{832955}{15881632} a^{11} - \frac{921645}{7940816} a^{10} - \frac{250165}{15881632} a^{9} + \frac{322993}{15881632} a^{8} + \frac{1393819}{7940816} a^{7} - \frac{249759}{15881632} a^{6} + \frac{379887}{1985204} a^{5} - \frac{132557}{1985204} a^{4} - \frac{1043609}{3970408} a^{3} - \frac{695389}{1985204} a^{2} + \frac{761}{992602} a - \frac{103970}{496301}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 32955502.9085 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T766:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 82944
The 144 conjugacy class representatives for t18n766 are not computed
Character table for t18n766 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 9.9.13632439166829.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ R $18$ R ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ R ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ $18$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.9.9.2$x^{9} + 18 x^{3} + 27 x + 27$$3$$3$$9$$C_3^2 : S_3 $$[3/2, 3/2]_{2}^{3}$
3.9.9.2$x^{9} + 18 x^{3} + 27 x + 27$$3$$3$$9$$C_3^2 : S_3 $$[3/2, 3/2]_{2}^{3}$
$7$7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.12.10.1$x^{12} - 70 x^{6} + 35721$$6$$2$$10$$C_6\times C_2$$[\ ]_{6}^{2}$
$13$$\Q_{13}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{13}$$x + 2$$1$$1$$0$Trivial$[\ ]$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
$29$$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.3.2.1$x^{3} - 29$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
29.3.2.1$x^{3} - 29$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$