Normalized defining polynomial
\( x^{18} - 3 x^{17} - 12 x^{16} + 47 x^{15} + 33 x^{14} - 294 x^{13} - 19 x^{12} + 1614 x^{11} - 585 x^{10} - 6105 x^{9} + 3633 x^{8} + 11373 x^{7} - 6912 x^{6} - 8976 x^{5} + 4554 x^{4} + 2190 x^{3} - 1011 x^{2} - 18 x + 12 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(235551134719659407332009946112=2^{10}\cdot 3^{23}\cdot 367^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 367$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{57} a^{16} + \frac{10}{57} a^{15} + \frac{8}{57} a^{14} + \frac{20}{57} a^{13} - \frac{17}{57} a^{12} + \frac{7}{19} a^{11} + \frac{5}{19} a^{10} + \frac{4}{19} a^{9} - \frac{9}{19} a^{8} - \frac{8}{19} a^{7} + \frac{7}{19} a^{6} - \frac{7}{19} a^{5} + \frac{8}{19} a^{4} - \frac{9}{19} a^{3} + \frac{8}{19} a^{2} - \frac{1}{19}$, $\frac{1}{19508491721258829564918} a^{17} + \frac{16353989546846874767}{19508491721258829564918} a^{16} - \frac{749285419711764108598}{3251415286876471594153} a^{15} + \frac{3316859622140070849631}{19508491721258829564918} a^{14} + \frac{136861565122230402313}{6502830573752943188306} a^{13} + \frac{2581540846990227637100}{9754245860629414782459} a^{12} + \frac{238529554360028873977}{6502830573752943188306} a^{11} + \frac{1560277390279787589201}{3251415286876471594153} a^{10} - \frac{1969614583822133720591}{6502830573752943188306} a^{9} - \frac{2827582584713037141173}{6502830573752943188306} a^{8} - \frac{2284873215491750491837}{6502830573752943188306} a^{7} - \frac{3051785546022386316039}{6502830573752943188306} a^{6} - \frac{608856843074860745795}{3251415286876471594153} a^{5} + \frac{353927758813357882629}{3251415286876471594153} a^{4} + \frac{1270839427327262951292}{3251415286876471594153} a^{3} - \frac{755989707361840889886}{3251415286876471594153} a^{2} + \frac{266926243482726027979}{6502830573752943188306} a + \frac{845286821745250139360}{3251415286876471594153}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1483164841.62 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 331776 |
| The 192 conjugacy class representatives for t18n882 are not computed |
| Character table for t18n882 is not computed |
Intermediate fields
| 3.3.1101.1, 9.9.35026116351444.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | $18$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.6.10.8 | $x^{6} + 2 x^{5} + 2$ | $6$ | $1$ | $10$ | $S_4\times C_2$ | $[2, 8/3, 8/3]_{3}^{2}$ | |
| $3$ | 3.6.10.3 | $x^{6} + 36$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ |
| 3.12.13.6 | $x^{12} + 3 x^{11} + 3 x^{7} + 3 x^{6} + 3 x^{4} + 3 x^{2} - 3$ | $12$ | $1$ | $13$ | 12T35 | $[5/4, 5/4]_{4}^{2}$ | |
| 367 | Data not computed | ||||||