Normalized defining polynomial
\( x^{18} - 9 x^{17} + 21 x^{16} - 8 x^{15} + 177 x^{14} - 903 x^{13} + 160 x^{12} + 8553 x^{11} - 33273 x^{10} + 67562 x^{9} - 44991 x^{8} - 96585 x^{7} + 188851 x^{6} - 38604 x^{5} - 117552 x^{4} + 57532 x^{3} + 19776 x^{2} - 9414 x - 1538 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(20714324019129661632580349263872=2^{16}\cdot 3^{24}\cdot 47^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{10} - \frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} - \frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{12} a^{15} - \frac{1}{6} a^{14} + \frac{1}{12} a^{12} + \frac{1}{6} a^{11} - \frac{1}{4} a^{9} + \frac{1}{6} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2} + \frac{1}{6}$, $\frac{1}{24} a^{16} - \frac{1}{24} a^{15} - \frac{1}{12} a^{14} + \frac{1}{24} a^{13} + \frac{1}{8} a^{12} + \frac{1}{12} a^{11} - \frac{1}{8} a^{10} - \frac{1}{24} a^{9} - \frac{1}{6} a^{8} + \frac{1}{8} a^{7} - \frac{7}{24} a^{6} - \frac{5}{12} a^{5} - \frac{5}{12} a^{4} - \frac{1}{4} a^{3} + \frac{5}{12} a^{2} - \frac{5}{12} a - \frac{5}{12}$, $\frac{1}{2440393733140975108096451845058136} a^{17} - \frac{485330840040137727485312281343}{29760899184646037903615266403148} a^{16} - \frac{26639964689544349770090241319915}{813464577713658369365483948352712} a^{15} - \frac{213434975687171371464559911765973}{2440393733140975108096451845058136} a^{14} - \frac{33544802840376571675410072688765}{1220196866570487554048225922529068} a^{13} + \frac{128152312827634398658759911686551}{2440393733140975108096451845058136} a^{12} + \frac{811151634131817470875922142542075}{2440393733140975108096451845058136} a^{11} - \frac{21328503161435554612987949923359}{406732288856829184682741974176356} a^{10} + \frac{556330064936101508394614671468109}{2440393733140975108096451845058136} a^{9} + \frac{413542432013644037065785213707231}{2440393733140975108096451845058136} a^{8} + \frac{62852196827208025050458658682547}{406732288856829184682741974176356} a^{7} + \frac{1112769484566022713355479358970573}{2440393733140975108096451845058136} a^{6} + \frac{61017123490782066894765924125705}{305049216642621888512056480632267} a^{5} - \frac{156536449006760462345364817615477}{610098433285243777024112961264534} a^{4} - \frac{35328800050677505238901312062828}{305049216642621888512056480632267} a^{3} - \frac{60186472177896753380132259700725}{203366144428414592341370987088178} a^{2} + \frac{154962270514592831801440790567}{7440224796161509475903816600787} a - \frac{166563955929410159678314970011795}{1220196866570487554048225922529068}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11827233421.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 331776 |
| The 180 conjugacy class representatives for t18n881 are not computed |
| Character table for t18n881 is not computed |
Intermediate fields
| 3.3.564.1, 9.9.165968803220544.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | $18$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.2 | $x^{6} + 2 x^{3} + 2 x^{2} + 6$ | $6$ | $1$ | $8$ | $S_4\times C_2$ | $[4/3, 4/3, 2]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ |
| 3.12.18.78 | $x^{12} - 15 x^{11} - 24 x^{10} - 15 x^{9} - 9 x^{7} + 21 x^{6} + 18 x^{5} - 9 x^{4} - 36 x^{3} + 36$ | $6$ | $2$ | $18$ | $S_3^2$ | $[3/2, 2]_{2}^{2}$ | |
| 47 | Data not computed | ||||||