\\ Pari/GP code for working with number field 18.14.1645711793419959485319741440000.1. \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^18 - 2*y^17 - 8*y^16 + 74*y^15 - 166*y^14 - 484*y^13 + 3165*y^12 - 968*y^11 - 15634*y^10 + 19926*y^9 + 16772*y^8 - 48930*y^7 + 34261*y^6 - 6680*y^5 - 2478*y^4 + 1320*y^3 - 178*y^2 + 1, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: \\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 2*x^17 - 8*x^16 + 74*x^15 - 166*x^14 - 484*x^13 + 3165*x^12 - 968*x^11 - 15634*x^10 + 19926*x^9 + 16772*x^8 - 48930*x^7 + 34261*x^6 - 6680*x^5 - 2478*x^4 + 1320*x^3 - 178*x^2 + 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(L)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])