Normalized defining polynomial
\( x^{18} - 6 x^{17} - 174 x^{16} + 1418 x^{15} + 9183 x^{14} - 114246 x^{13} - 45249 x^{12} + 3906366 x^{11} - 9250809 x^{10} - 55245248 x^{9} + 276982620 x^{8} + 64877160 x^{7} - 2854359357 x^{6} + 5466517950 x^{5} + 5498508363 x^{4} - 34368736612 x^{3} + 50028443868 x^{2} - 29023484352 x + 4128916321 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1484875323272941639219759100572157607936=2^{18}\cdot 3^{27}\cdot 73\cdot 3189897037^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $150.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 73, 3189897037$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{9} a^{12} + \frac{1}{3} a^{11} - \frac{4}{9} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{2}{9} a^{6} + \frac{1}{3} a^{5} - \frac{4}{9} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{9}$, $\frac{1}{9} a^{13} - \frac{4}{9} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{2}{9} a^{7} - \frac{1}{3} a^{6} - \frac{4}{9} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{9} a - \frac{1}{3}$, $\frac{1}{9} a^{14} - \frac{4}{9} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{2}{9} a^{8} - \frac{1}{3} a^{7} - \frac{4}{9} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{18} a^{15} - \frac{1}{18} a^{14} - \frac{1}{18} a^{13} + \frac{2}{9} a^{11} - \frac{5}{18} a^{10} - \frac{4}{9} a^{9} - \frac{4}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} + \frac{2}{9} a^{5} - \frac{4}{9} a^{4} + \frac{1}{6} a^{3} + \frac{5}{18} a^{2} - \frac{2}{9} a + \frac{7}{18}$, $\frac{1}{18} a^{16} - \frac{1}{18} a^{13} - \frac{1}{6} a^{11} - \frac{1}{18} a^{10} - \frac{1}{3} a^{9} + \frac{1}{9} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{7}{18} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{2964869179965995750123605545495807823588164674254248606} a^{17} - \frac{63814508856622960980228247435220816037773277029498227}{2964869179965995750123605545495807823588164674254248606} a^{16} - \frac{7192465542035681855620865772043183854595114180576249}{988289726655331916707868515165269274529388224751416202} a^{15} - \frac{67152977449221644736710680327821266765283629444849446}{1482434589982997875061802772747903911794082337127124303} a^{14} - \frac{51539912636583828838227901516727829516011233479249005}{1482434589982997875061802772747903911794082337127124303} a^{13} + \frac{50188072717947190496020814248771823308653776071342405}{2964869179965995750123605545495807823588164674254248606} a^{12} - \frac{172831409088752230117188927902229252388256045352652807}{494144863327665958353934257582634637264694112375708101} a^{11} - \frac{44969591521178465797192911690640492240216574308622}{182813489947342196949291253267715367097556090409067} a^{10} + \frac{693723757367091953283564180834758437063798370522642014}{1482434589982997875061802772747903911794082337127124303} a^{9} + \frac{164863250590655908883273366554935125073951607405352735}{494144863327665958353934257582634637264694112375708101} a^{8} + \frac{56384218600762719697215651299798931648638116056891848}{164714954442555319451311419194211545754898037458569367} a^{7} - \frac{717181523828700920826336790473505375654271184009188423}{1482434589982997875061802772747903911794082337127124303} a^{6} + \frac{362765074694220724531766986023414650549005655719942745}{2964869179965995750123605545495807823588164674254248606} a^{5} - \frac{734296255280753447520543786365743431773749220115053285}{2964869179965995750123605545495807823588164674254248606} a^{4} - \frac{16407301791850154254104167468435917730095617728698757}{1482434589982997875061802772747903911794082337127124303} a^{3} + \frac{901660108316097757072707366345001190815461838918591763}{2964869179965995750123605545495807823588164674254248606} a^{2} - \frac{512005569822563115818770074031342674729793362676351072}{1482434589982997875061802772747903911794082337127124303} a - \frac{6080574818444334446294227586678630574270255364885072}{40065799729270212839508183047240646264704928030462819}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 43097163361600 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 279936 |
| The 159 conjugacy class representatives for t18n857 are not computed |
| Character table for t18n857 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{36})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{7}$ | $18$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $3$ | 3.6.9.3 | $x^{6} + 3 x^{4} + 24$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.12.18.82 | $x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ | |
| 73 | Data not computed | ||||||
| 3189897037 | Data not computed | ||||||