Normalized defining polynomial
\( x^{18} - 7 x^{17} - 103 x^{16} + 937 x^{15} + 2933 x^{14} - 47143 x^{13} + 31349 x^{12} + 1093608 x^{11} - 3268795 x^{10} - 9845841 x^{9} + 65031017 x^{8} - 40903477 x^{7} - 469853154 x^{6} + 1288958095 x^{5} - 114785660 x^{4} - 5285633443 x^{3} + 11033016132 x^{2} - 9866585215 x + 3469475203 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14503293777515810243222263717959408085625=5^{4}\cdot 13^{15}\cdot 181^{2}\cdot 389\cdot 5964373^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $170.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 181, 389, 5964373$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{20} a^{16} + \frac{1}{20} a^{15} + \frac{1}{10} a^{14} - \frac{1}{4} a^{13} - \frac{3}{20} a^{12} + \frac{3}{20} a^{11} + \frac{1}{10} a^{10} + \frac{1}{4} a^{9} + \frac{1}{5} a^{8} + \frac{1}{20} a^{7} - \frac{1}{10} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{4} a^{3} - \frac{1}{10} a^{2} + \frac{3}{10} a + \frac{1}{20}$, $\frac{1}{2387448457985035244150896907778807841100892356540} a^{17} - \frac{22883069944167317478935874717661568460856272257}{1193724228992517622075448453889403920550446178270} a^{16} + \frac{52442817000622549195966717338934404531020837388}{596862114496258811037724226944701960275223089135} a^{15} + \frac{28665085929080326204505934574747097551043630473}{477489691597007048830179381555761568220178471308} a^{14} - \frac{407520299520550672718030000756754322635340972433}{2387448457985035244150896907778807841100892356540} a^{13} + \frac{93485042449254177595144842154619399919976525632}{596862114496258811037724226944701960275223089135} a^{12} - \frac{97627956630433063232370661067912263188934585573}{2387448457985035244150896907778807841100892356540} a^{11} - \frac{45672234354959821581569792538995448300498928}{119372422899251762207544845388940392055044617827} a^{10} + \frac{162974152635404792031336194380018358302601631467}{1193724228992517622075448453889403920550446178270} a^{9} - \frac{374300577657353948077741140078407701647039211727}{1193724228992517622075448453889403920550446178270} a^{8} + \frac{157977822273892356958505609310087393570410582173}{2387448457985035244150896907778807841100892356540} a^{7} - \frac{156736265190002332562412623970645522289379502773}{1193724228992517622075448453889403920550446178270} a^{6} + \frac{297014565698684711163695681523346783981191421147}{1193724228992517622075448453889403920550446178270} a^{5} + \frac{107162809454353479919546773304590542577364186417}{477489691597007048830179381555761568220178471308} a^{4} - \frac{895131289469845696240513997852106374334728098057}{2387448457985035244150896907778807841100892356540} a^{3} + \frac{180291816882638727011016894797111622417409667931}{2387448457985035244150896907778807841100892356540} a^{2} + \frac{407578520042723300675428888037464896306415706863}{1193724228992517622075448453889403920550446178270} a + \frac{193758388881177657200701912864655614707765945893}{477489691597007048830179381555761568220178471308}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23884669346500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 279936 |
| The 159 conjugacy class representatives for t18n857 are not computed |
| Character table for t18n857 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.169.1, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }$ | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | $18$ | $18$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }$ | $18$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $13$ | 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.12.10.1 | $x^{12} - 117 x^{6} + 10816$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $181$ | $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.3.2.3 | $x^{3} - 724$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 181.3.0.1 | $x^{3} - x + 18$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 389 | Data not computed | ||||||
| 5964373 | Data not computed | ||||||