Normalized defining polynomial
\( x^{18} - x^{17} - 18 x^{16} + 18 x^{15} + 155 x^{14} - 296 x^{13} - 590 x^{12} + 2148 x^{11} + 250 x^{10} - 5838 x^{9} + 1613 x^{8} + 7371 x^{7} - 1905 x^{6} - 4789 x^{5} + 442 x^{4} + 1459 x^{3} + 99 x^{2} - 164 x - 31 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(142701555280888482876925673472=2^{18}\cdot 3^{9}\cdot 37^{6}\cdot 47^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{13} - \frac{1}{9} a^{12} + \frac{4}{9} a^{9} + \frac{4}{9} a^{8} + \frac{2}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{3} a^{5} - \frac{1}{9} a^{4} + \frac{1}{9} a^{3} + \frac{1}{9} a^{2} - \frac{4}{9} a - \frac{4}{9}$, $\frac{1}{18} a^{15} + \frac{1}{18} a^{13} - \frac{1}{9} a^{12} + \frac{1}{18} a^{10} + \frac{1}{6} a^{9} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{1}{18} a^{6} + \frac{4}{9} a^{5} + \frac{4}{9} a^{4} - \frac{1}{3} a^{3} + \frac{1}{18} a^{2} - \frac{1}{6} a + \frac{1}{18}$, $\frac{1}{18} a^{16} - \frac{1}{18} a^{14} + \frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{18} a^{11} - \frac{1}{6} a^{10} - \frac{2}{9} a^{9} + \frac{1}{18} a^{7} - \frac{2}{9} a^{5} + \frac{4}{9} a^{4} - \frac{7}{18} a^{3} + \frac{7}{18} a^{2} + \frac{1}{6} a - \frac{2}{9}$, $\frac{1}{172900623211192476} a^{17} + \frac{189268081607347}{43225155802798119} a^{16} - \frac{921022147875794}{43225155802798119} a^{15} + \frac{4494755778438965}{86450311605596238} a^{14} + \frac{3821755173349277}{57633541070397492} a^{13} + \frac{21060923511104075}{172900623211192476} a^{12} - \frac{1685684650078823}{172900623211192476} a^{11} - \frac{18542447607059717}{172900623211192476} a^{10} - \frac{80013220982198461}{172900623211192476} a^{9} + \frac{25907380015046123}{57633541070397492} a^{8} + \frac{43117394769290581}{86450311605596238} a^{7} + \frac{12609043195098889}{57633541070397492} a^{6} + \frac{33054378699518773}{86450311605596238} a^{5} - \frac{25504549456906315}{172900623211192476} a^{4} + \frac{23186234325917929}{57633541070397492} a^{3} - \frac{6077222581884149}{14408385267599373} a^{2} + \frac{5902441641715745}{172900623211192476} a - \frac{85711022023373393}{172900623211192476}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 487880082.108 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18432 |
| The 120 conjugacy class representatives for t18n623 are not computed |
| Character table for t18n623 is not computed |
Intermediate fields
| 3.3.148.1, 3.3.564.1, 9.9.9087459412032.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.10.6 | $x^{6} + 2 x^{5} + 4 x^{3} + 6$ | $6$ | $1$ | $10$ | $S_4\times C_2$ | $[2, 8/3, 8/3]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.12.9.2 | $x^{12} - 9 x^{4} + 27$ | $4$ | $3$ | $9$ | $D_4 \times C_3$ | $[\ ]_{4}^{6}$ | |
| $37$ | 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $47$ | 47.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 47.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 47.12.6.1 | $x^{12} + 1038230 x^{6} - 229345007 x^{2} + 269480383225$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |