/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^18 - 51*x^16 + 351*x^14 + 91*x^12 - 6672*x^10 + 14796*x^8 + 17232*x^6 - 88704*x^4 + 81216*x^2 - 6768, 18, 781, [14, 2], 1325716737224298344485142352887808, [2, 3, 47], [1, a, a^2, a^3, a^4, a^5, 1/2*a^6 - 1/2*a^5 - 1/2*a^4 - 1/2*a^3, 1/2*a^7 - 1/2*a^3, 1/2*a^8 - 1/2*a^4, 1/2*a^9 - 1/2*a^5, 1/12*a^10 - 1/4*a^9 + 1/6*a^8 + 1/12*a^6 - 1/4*a^5 - 1/2*a^4 - 1/2*a^3 - 1/2*a^2, 1/12*a^11 - 1/12*a^9 + 1/12*a^7 + 1/4*a^5 - 1/2*a^4 - 1/2*a^2, 1/12*a^12 - 1/4*a^9 - 1/4*a^8 - 1/6*a^6 - 1/4*a^5 - 1/2*a^4 - 1/2*a^3 - 1/2*a^2, 1/72*a^13 - 1/24*a^11 + 1/24*a^9 - 5/72*a^7 - 1/3*a^5 - 1/2*a^3 + 1/6*a, 1/72*a^14 - 1/24*a^12 - 1/24*a^10 - 1/4*a^9 - 17/72*a^8 + 1/12*a^6 + 1/4*a^5 - 1/2*a^4 - 1/3*a^2, 1/144*a^15 - 1/144*a^13 - 1/24*a^12 - 1/48*a^11 - 1/24*a^10 + 1/144*a^9 + 1/24*a^8 - 17/72*a^7 + 1/24*a^6 + 5/12*a^5 - 1/2*a^4 + 1/12*a^3 - 1/2*a^2 + 1/6*a - 1/2, 1/36234849456*a^16 + 34489967/12078283152*a^14 - 479731715/12078283152*a^12 - 653266937/36234849456*a^10 - 136730247/1006523596*a^8 + 155232691/754892697*a^6 + 1206483127/3019570788*a^4 - 3911138/251630899*a^2 - 119438961/251630899, 1/36234849456*a^17 + 34489967/12078283152*a^15 + 7843361/4026094384*a^13 + 856518457/36234849456*a^11 - 1072012381/6039141576*a^9 + 990230629/6039141576*a^7 - 303302267/3019570788*a^5 + 243808623/503261798*a^3 + 12752977/503261798*a], 0, 1, [], 1, [ (398233543)/(36234849456)*a^(16) - (19120523995)/(36234849456)*a^(14) + (9182101367)/(4026094384)*a^(12) + (284663811379)/(36234849456)*a^(10) - (905742518957)/(18117424728)*a^(8) + (12359351119)/(1006523596)*a^(6) + (695076235897)/(3019570788)*a^(4) - (430913909825)/(1509785394)*a^(2) + (4554952281)/(251630899) , (633329433)/(2013047192)*a^(16) - (22911286105)/(1509785394)*a^(14) + (51681907573)/(754892697)*a^(12) + (658219718989)/(3019570788)*a^(10) - (3012166842109)/(2013047192)*a^(8) + (1559541731105)/(3019570788)*a^(6) + (1723885484850)/(251630899)*a^(4) - (4508868200671)/(503261798)*a^(2) + (193624967038)/(251630899) , (163688869)/(4529356182)*a^(16) - (439973906)/(251630899)*a^(14) + (12239919475)/(1509785394)*a^(12) + (110980840255)/(4529356182)*a^(10) - (267181026023)/(1509785394)*a^(8) + (108308151889)/(1509785394)*a^(6) + (1223583343531)/(1509785394)*a^(4) - (273612856620)/(251630899)*a^(2) + (22416682711)/(251630899) , (10500266275)/(36234849456)*a^(16) - (506611149359)/(36234849456)*a^(14) + (254564372443)/(4026094384)*a^(12) + (7263943627015)/(36234849456)*a^(10) - (25035257682613)/(18117424728)*a^(8) + (486120188587)/(1006523596)*a^(6) + (19107042374965)/(3019570788)*a^(4) - (12509581129267)/(1509785394)*a^(2) + (177380578870)/(251630899) , (1277285389)/(36234849456)*a^(16) - (6835470377)/(4026094384)*a^(14) + (30430589025)/(4026094384)*a^(12) + (892257706957)/(36234849456)*a^(10) - (998049438679)/(6039141576)*a^(8) + (13365576188)/(251630899)*a^(6) + (2283994803781)/(3019570788)*a^(4) - (493672505191)/(503261798)*a^(2) + (21673947722)/(251630899) , (197257015)/(36234849456)*a^(16) - (9438701531)/(36234849456)*a^(14) + (4389402319)/(4026094384)*a^(12) + (142251709003)/(36234849456)*a^(10) - (432297152557)/(18117424728)*a^(8) + (16871361487)/(3019570788)*a^(6) + (324597480775)/(3019570788)*a^(4) - (215105092843)/(1509785394)*a^(2) + (7266443968)/(251630899) , (69742529)/(18117424728)*a^(17) + (850273283)/(36234849456)*a^(16) - (750747529)/(4026094384)*a^(15) - (40945934129)/(36234849456)*a^(14) + (10520248963)/(12078283152)*a^(13) + (60649133165)/(12078283152)*a^(12) + (98500407391)/(36234849456)*a^(11) + (597475059887)/(36234849456)*a^(10) - (233392902049)/(12078283152)*a^(9) - (1991883340903)/(18117424728)*a^(8) + (10871570967)/(2013047192)*a^(7) + (200987491597)/(6039141576)*a^(6) + (281633987755)/(3019570788)*a^(5) + (1525079740181)/(3019570788)*a^(4) - (105775687847)/(1006523596)*a^(3) - (971356454539)/(1509785394)*a^(2) - (8855508317)/(503261798)*a + (23035841341)/(503261798) , (30995753)/(9058712364)*a^(17) - (265305067)/(9058712364)*a^(16) - (1973019869)/(12078283152)*a^(15) + (8555194235)/(6039141576)*a^(14) + (24184765261)/(36234849456)*a^(13) - (6598475747)/(1006523596)*a^(12) + (91961325671)/(36234849456)*a^(11) - (89817862265)/(4529356182)*a^(10) - (58666159205)/(4026094384)*a^(9) + (108000447112)/(754892697)*a^(8) + (14539641385)/(9058712364)*a^(7) - (355441834883)/(6039141576)*a^(6) + (32942181133)/(503261798)*a^(5) - (493941385579)/(754892697)*a^(4) - (78901777159)/(1006523596)*a^(3) + (445556061719)/(503261798)*a^(2) + (11656192567)/(754892697)*a - (39394187585)/(503261798) , (1749600451)/(12078283152)*a^(17) - (5213408683)/(36234849456)*a^(16) - (31661655905)/(4529356182)*a^(15) + (251526062381)/(36234849456)*a^(14) + (573809268269)/(18117424728)*a^(13) - (379060823437)/(12078283152)*a^(12) + (75539583527)/(754892697)*a^(11) - (3607078200691)/(36234849456)*a^(10) - (25077270118111)/(36234849456)*a^(9) + (12425778743899)/(18117424728)*a^(8) + (1108397482883)/(4529356182)*a^(7) - (482128855783)/(2013047192)*a^(6) + (4783675166375)/(1509785394)*a^(5) - (9481270370491)/(3019570788)*a^(4) - (12552964628161)/(3019570788)*a^(3) + (6208295778259)/(1509785394)*a^(2) + (270456224383)/(754892697)*a - (177883796629)/(503261798) , (1749600451)/(12078283152)*a^(17) + (5213408683)/(36234849456)*a^(16) - (31661655905)/(4529356182)*a^(15) - (251526062381)/(36234849456)*a^(14) + (573809268269)/(18117424728)*a^(13) + (379060823437)/(12078283152)*a^(12) + (75539583527)/(754892697)*a^(11) + (3607078200691)/(36234849456)*a^(10) - (25077270118111)/(36234849456)*a^(9) - (12425778743899)/(18117424728)*a^(8) + (1108397482883)/(4529356182)*a^(7) + (482128855783)/(2013047192)*a^(6) + (4783675166375)/(1509785394)*a^(5) + (9481270370491)/(3019570788)*a^(4) - (12552964628161)/(3019570788)*a^(3) - (6208295778259)/(1509785394)*a^(2) + (270456224383)/(754892697)*a + (177883796629)/(503261798) , (30995753)/(9058712364)*a^(17) + (265305067)/(9058712364)*a^(16) - (1973019869)/(12078283152)*a^(15) - (8555194235)/(6039141576)*a^(14) + (24184765261)/(36234849456)*a^(13) + (6598475747)/(1006523596)*a^(12) + (91961325671)/(36234849456)*a^(11) + (89817862265)/(4529356182)*a^(10) - (58666159205)/(4026094384)*a^(9) - (108000447112)/(754892697)*a^(8) + (14539641385)/(9058712364)*a^(7) + (355441834883)/(6039141576)*a^(6) + (32942181133)/(503261798)*a^(5) + (493941385579)/(754892697)*a^(4) - (78901777159)/(1006523596)*a^(3) - (445556061719)/(503261798)*a^(2) + (11656192567)/(754892697)*a + (39394187585)/(503261798) , (81598781)/(9058712364)*a^(17) + (677566879)/(12078283152)*a^(16) - (7925441339)/(18117424728)*a^(15) - (98140006225)/(36234849456)*a^(14) + (2112575775)/(1006523596)*a^(13) + (148891395943)/(12078283152)*a^(12) + (26213075659)/(4529356182)*a^(11) + (155108565973)/(4026094384)*a^(10) - (410273447263)/(9058712364)*a^(9) - (4876392336455)/(18117424728)*a^(8) + (150012038885)/(6039141576)*a^(7) + (150404795161)/(1509785394)*a^(6) + (605811664967)/(3019570788)*a^(5) + (1238281687341)/(1006523596)*a^(4) - (228922244056)/(754892697)*a^(3) - (1231886822164)/(754892697)*a^(2) + (31429657047)/(503261798)*a + (38099849212)/(251630899) , (271310747)/(9058712364)*a^(17) + (110867611)/(3019570788)*a^(16) - (13129636703)/(9058712364)*a^(15) - (4021646744)/(2264678091)*a^(14) + (122028221131)/(18117424728)*a^(13) + (12396625667)/(1509785394)*a^(12) + (366653282539)/(18117424728)*a^(11) + (12535019197)/(503261798)*a^(10) - (2660866088581)/(18117424728)*a^(9) - (1622846139425)/(9058712364)*a^(8) + (1103298937207)/(18117424728)*a^(7) + (54641640049)/(754892697)*a^(6) + (1012474516997)/(1509785394)*a^(5) + (206092674526)/(251630899)*a^(4) - (1369160053921)/(1509785394)*a^(3) - (831034972013)/(754892697)*a^(2) + (128466328141)/(1509785394)*a + (24692669961)/(251630899) , (3026630563)/(36234849456)*a^(17) + (4583604001)/(36234849456)*a^(16) - (4066993919)/(1006523596)*a^(15) - (221700621853)/(36234849456)*a^(14) + (338973884933)/(18117424728)*a^(13) + (341788115549)/(12078283152)*a^(12) + (513817285063)/(9058712364)*a^(11) + (3115949328535)/(36234849456)*a^(10) - (1644268036721)/(4026094384)*a^(9) - (5595264577975)/(9058712364)*a^(8) + (742245753419)/(4529356182)*a^(7) + (1484256347011)/(6039141576)*a^(6) + (2822581661335)/(1509785394)*a^(5) + (8537069813815)/(3019570788)*a^(4) - (2519253313013)/(1006523596)*a^(3) - (2852421122377)/(754892697)*a^(2) + (161594921368)/(754892697)*a + (163335925863)/(503261798) , (7414097)/(1393648056)*a^(17) + (4654094099)/(18117424728)*a^(16) - (40109953)/(154849784)*a^(15) - (6254151981)/(503261798)*a^(14) + (196612699)/(154849784)*a^(13) + (57963323485)/(1006523596)*a^(12) + (4667257013)/(1393648056)*a^(11) + (785510514083)/(4529356182)*a^(10) - (2037645421)/(77424892)*a^(9) - (7585298957359)/(6039141576)*a^(8) + (1839478583)/(116137338)*a^(7) + (264596466323)/(503261798)*a^(6) + (22766874709)/(232274676)*a^(5) + (8664119324795)/(1509785394)*a^(4) - (7060365739)/(38712446)*a^(3) - (1963096252932)/(251630899)*a^(2) + (2911221798)/(19356223)*a + (179354851574)/(251630899) ], 157113239194, [[x^3 - x^2 - 5*x + 3, 1], [x^9 - 18*x^7 - 2*x^6 + 108*x^5 + 24*x^4 - 236*x^3 - 72*x^2 + 120*x + 24, 1]]]