Normalized defining polynomial
\( x^{18} - 51 x^{16} + 351 x^{14} + 91 x^{12} - 6672 x^{10} + 14796 x^{8} + 17232 x^{6} - 88704 x^{4} + 81216 x^{2} - 6768 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1325716737224298344485142352887808=2^{22}\cdot 3^{24}\cdot 47^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{12} a^{10} - \frac{1}{4} a^{9} + \frac{1}{6} a^{8} + \frac{1}{12} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{9} + \frac{1}{12} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{6} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{72} a^{13} - \frac{1}{24} a^{11} + \frac{1}{24} a^{9} - \frac{5}{72} a^{7} - \frac{1}{3} a^{5} - \frac{1}{2} a^{3} + \frac{1}{6} a$, $\frac{1}{72} a^{14} - \frac{1}{24} a^{12} - \frac{1}{24} a^{10} - \frac{1}{4} a^{9} - \frac{17}{72} a^{8} + \frac{1}{12} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{144} a^{15} - \frac{1}{144} a^{13} - \frac{1}{24} a^{12} - \frac{1}{48} a^{11} - \frac{1}{24} a^{10} + \frac{1}{144} a^{9} + \frac{1}{24} a^{8} - \frac{17}{72} a^{7} + \frac{1}{24} a^{6} + \frac{5}{12} a^{5} - \frac{1}{2} a^{4} + \frac{1}{12} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{36234849456} a^{16} + \frac{34489967}{12078283152} a^{14} - \frac{479731715}{12078283152} a^{12} - \frac{653266937}{36234849456} a^{10} - \frac{136730247}{1006523596} a^{8} + \frac{155232691}{754892697} a^{6} + \frac{1206483127}{3019570788} a^{4} - \frac{3911138}{251630899} a^{2} - \frac{119438961}{251630899}$, $\frac{1}{36234849456} a^{17} + \frac{34489967}{12078283152} a^{15} + \frac{7843361}{4026094384} a^{13} + \frac{856518457}{36234849456} a^{11} - \frac{1072012381}{6039141576} a^{9} + \frac{990230629}{6039141576} a^{7} - \frac{303302267}{3019570788} a^{5} + \frac{243808623}{503261798} a^{3} + \frac{12752977}{503261798} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 157113239194 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 74 conjugacy class representatives for t18n781 are not computed |
| Character table for t18n781 is not computed |
Intermediate fields
| 3.3.564.1, 9.9.165968803220544.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.8 | $x^{6} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ |
| 2.12.16.15 | $x^{12} - 71 x^{8} + 123 x^{4} - 245$ | $6$ | $2$ | $16$ | 12T50 | $[4/3, 4/3, 2, 2]_{3}^{2}$ | |
| $3$ | 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ |
| 3.6.9.16 | $x^{6} + 3 x^{4} + 6 x^{3} + 3$ | $6$ | $1$ | $9$ | $S_3^2$ | $[3/2, 2]_{2}^{2}$ | |
| 3.6.9.16 | $x^{6} + 3 x^{4} + 6 x^{3} + 3$ | $6$ | $1$ | $9$ | $S_3^2$ | $[3/2, 2]_{2}^{2}$ | |
| 47 | Data not computed | ||||||