Normalized defining polynomial
\( x^{18} - 3 x^{17} - 21 x^{16} + 69 x^{15} + 180 x^{14} - 603 x^{13} - 1029 x^{12} + 1764 x^{11} + 3060 x^{10} + 465 x^{9} - 2502 x^{8} - 9162 x^{7} - 3600 x^{6} + 12348 x^{5} + 6048 x^{4} - 4086 x^{3} - 2493 x^{2} - 126 x + 51 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(114805789186292807734226138688=2^{6}\cdot 3^{33}\cdot 19^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{38} a^{15} - \frac{1}{2} a^{14} + \frac{7}{19} a^{13} + \frac{17}{38} a^{12} - \frac{1}{38} a^{11} - \frac{8}{19} a^{10} + \frac{7}{38} a^{9} - \frac{11}{38} a^{8} + \frac{7}{38} a^{7} + \frac{13}{38} a^{6} - \frac{3}{19} a^{5} - \frac{8}{19} a^{4} - \frac{7}{38} a^{3} + \frac{11}{38} a - \frac{13}{38}$, $\frac{1}{38} a^{16} - \frac{5}{38} a^{14} + \frac{17}{38} a^{13} + \frac{9}{19} a^{12} + \frac{3}{38} a^{11} + \frac{7}{38} a^{10} + \frac{4}{19} a^{9} - \frac{6}{19} a^{8} - \frac{3}{19} a^{7} + \frac{13}{38} a^{6} - \frac{8}{19} a^{5} - \frac{7}{38} a^{4} - \frac{1}{2} a^{3} + \frac{11}{38} a^{2} + \frac{3}{19} a - \frac{1}{2}$, $\frac{1}{176155058694080170305593386} a^{17} + \frac{609616162137421122745351}{176155058694080170305593386} a^{16} - \frac{165863982690166827589737}{176155058694080170305593386} a^{15} + \frac{25126852125725444559970948}{88077529347040085152796693} a^{14} - \frac{4251979618980464172797205}{9271318878635798437136494} a^{13} + \frac{351677354159424665356347}{176155058694080170305593386} a^{12} - \frac{31451179996147563508258910}{88077529347040085152796693} a^{11} - \frac{43111084841447411825243629}{176155058694080170305593386} a^{10} - \frac{13033776748416956448356471}{88077529347040085152796693} a^{9} - \frac{1024293485235101899646291}{4635659439317899218568247} a^{8} + \frac{48223304210080617527617139}{176155058694080170305593386} a^{7} + \frac{66970326385801681486620151}{176155058694080170305593386} a^{6} + \frac{23789795497154468205557101}{176155058694080170305593386} a^{5} - \frac{28658820171038454844106322}{88077529347040085152796693} a^{4} - \frac{1336166622119323545731572}{88077529347040085152796693} a^{3} - \frac{45247503878483134788948595}{176155058694080170305593386} a^{2} + \frac{79344001654237661565774485}{176155058694080170305593386} a + \frac{18014971638177199340900221}{176155058694080170305593386}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 417741885.482 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 13824 |
| The 96 conjugacy class representatives for t18n585 are not computed |
| Character table for t18n585 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 9.9.5609891727441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3 | Data not computed | ||||||
| $19$ | 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 19.6.5.3 | $x^{6} - 4864$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |