Properties

Label 18.14.1124739256...9689.4
Degree $18$
Signature $[14, 2]$
Discriminant $3^{24}\cdot 73^{5}\cdot 577^{3}$
Root discriminant $41.11$
Ramified primes $3, 73, 577$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T840

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8713, -2310, -32574, 12791, 38559, -23616, -8515, 15162, -12261, 332, 6297, -2337, -230, -30, 21, 74, -21, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^17 - 21*x^16 + 74*x^15 + 21*x^14 - 30*x^13 - 230*x^12 - 2337*x^11 + 6297*x^10 + 332*x^9 - 12261*x^8 + 15162*x^7 - 8515*x^6 - 23616*x^5 + 38559*x^4 + 12791*x^3 - 32574*x^2 - 2310*x + 8713)
 
gp: K = bnfinit(x^18 - 3*x^17 - 21*x^16 + 74*x^15 + 21*x^14 - 30*x^13 - 230*x^12 - 2337*x^11 + 6297*x^10 + 332*x^9 - 12261*x^8 + 15162*x^7 - 8515*x^6 - 23616*x^5 + 38559*x^4 + 12791*x^3 - 32574*x^2 - 2310*x + 8713, 1)
 

Normalized defining polynomial

\( x^{18} - 3 x^{17} - 21 x^{16} + 74 x^{15} + 21 x^{14} - 30 x^{13} - 230 x^{12} - 2337 x^{11} + 6297 x^{10} + 332 x^{9} - 12261 x^{8} + 15162 x^{7} - 8515 x^{6} - 23616 x^{5} + 38559 x^{4} + 12791 x^{3} - 32574 x^{2} - 2310 x + 8713 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[14, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(112473925614060022797462679689=3^{24}\cdot 73^{5}\cdot 577^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $41.11$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 73, 577$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{35839410055571674423007759176903} a^{17} + \frac{15868806251253581604337602547234}{35839410055571674423007759176903} a^{16} + \frac{5873635870825789683911037858454}{35839410055571674423007759176903} a^{15} + \frac{8783889316566286689100350924832}{35839410055571674423007759176903} a^{14} + \frac{9560342908267033627150255228881}{35839410055571674423007759176903} a^{13} - \frac{7335244028931531372838115631269}{35839410055571674423007759176903} a^{12} + \frac{17819659607225263787795133475832}{35839410055571674423007759176903} a^{11} + \frac{6209194123005569417467243804330}{35839410055571674423007759176903} a^{10} - \frac{4000481894919703315461970490133}{35839410055571674423007759176903} a^{9} - \frac{9877745669190364816542588864190}{35839410055571674423007759176903} a^{8} - \frac{3570141384156934893400806786220}{35839410055571674423007759176903} a^{7} - \frac{6491867414453882066936004533828}{35839410055571674423007759176903} a^{6} + \frac{1258475902352331137519271333898}{35839410055571674423007759176903} a^{5} - \frac{3034565206855791045746788092490}{35839410055571674423007759176903} a^{4} + \frac{5842684160810954141621730823141}{35839410055571674423007759176903} a^{3} + \frac{9480341374151457011419346671992}{35839410055571674423007759176903} a^{2} - \frac{11472286492635072824392800015205}{35839410055571674423007759176903} a + \frac{229996063022783866353391695798}{35839410055571674423007759176903}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 201788087.436 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T840:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 165888
The 180 conjugacy class representatives for t18n840 are not computed
Character table for t18n840 is not computed

Intermediate fields

\(\Q(\zeta_{9})^+\), 9.9.22384826361.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ R ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.9.12.1$x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$$3$$3$$12$$C_3^2$$[2]^{3}$
3.9.12.1$x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$$3$$3$$12$$C_3^2$$[2]^{3}$
$73$$\Q_{73}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{73}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{73}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{73}$$x + 5$$1$$1$$0$Trivial$[\ ]$
73.3.0.1$x^{3} - x + 14$$1$$3$$0$$C_3$$[\ ]^{3}$
73.3.0.1$x^{3} - x + 14$$1$$3$$0$$C_3$$[\ ]^{3}$
73.4.2.2$x^{4} - 73 x^{2} + 58619$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
73.4.3.2$x^{4} - 1825$$4$$1$$3$$C_4$$[\ ]_{4}$
577Data not computed