Properties

Label 18.14.1104233080...3125.1
Degree $18$
Signature $[14, 2]$
Discriminant $5^{9}\cdot 31\cdot 199^{6}\cdot 2936639$
Root discriminant $36.14$
Ramified primes $5, 31, 199, 2936639$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T915

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 16, 97, 272, 303, -167, -790, -606, 361, 814, 223, -388, -263, 80, 97, -6, -16, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 16*x^16 - 6*x^15 + 97*x^14 + 80*x^13 - 263*x^12 - 388*x^11 + 223*x^10 + 814*x^9 + 361*x^8 - 606*x^7 - 790*x^6 - 167*x^5 + 303*x^4 + 272*x^3 + 97*x^2 + 16*x + 1)
 
gp: K = bnfinit(x^18 - 16*x^16 - 6*x^15 + 97*x^14 + 80*x^13 - 263*x^12 - 388*x^11 + 223*x^10 + 814*x^9 + 361*x^8 - 606*x^7 - 790*x^6 - 167*x^5 + 303*x^4 + 272*x^3 + 97*x^2 + 16*x + 1, 1)
 

Normalized defining polynomial

\( x^{18} - 16 x^{16} - 6 x^{15} + 97 x^{14} + 80 x^{13} - 263 x^{12} - 388 x^{11} + 223 x^{10} + 814 x^{9} + 361 x^{8} - 606 x^{7} - 790 x^{6} - 167 x^{5} + 303 x^{4} + 272 x^{3} + 97 x^{2} + 16 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[14, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(11042330802575963798845703125=5^{9}\cdot 31\cdot 199^{6}\cdot 2936639\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $36.14$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 31, 199, 2936639$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5} a^{15} - \frac{2}{5} a^{13} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{14} - \frac{1}{5} a^{12} - \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{17} - \frac{2}{5} a^{12} + \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 74001176.031 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T915:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 839808
The 170 conjugacy class representatives for t18n915 are not computed
Character table for t18n915 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 6.6.4950125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $18$ ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ R ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{5}$ R $18$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ $18$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
31Data not computed
$199$199.3.2.3$x^{3} - 796$$3$$1$$2$$C_3$$[\ ]_{3}$
199.6.4.3$x^{6} + 2189 x^{3} + 1425636$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
199.9.0.1$x^{9} - x + 36$$1$$9$$0$$C_9$$[\ ]^{9}$
2936639Data not computed