Normalized defining polynomial
\( x^{18} - 3 x^{17} - 404 x^{16} + 1712 x^{15} + 43204 x^{14} - 224074 x^{13} + 1293253 x^{12} - 14888454 x^{11} - 347682222 x^{10} + 4245099965 x^{9} - 84891381 x^{8} - 180605815836 x^{7} + 987979666336 x^{6} - 1394245968721 x^{5} - 7110505980691 x^{4} + 29751632848805 x^{3} - 22916864268836 x^{2} - 17608077562964 x - 2211171219071 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1004220442431955142780653174367877800000000000=2^{12}\cdot 5^{11}\cdot 19^{2}\cdot 37^{6}\cdot 61\cdot 151^{4}\cdot 643^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $316.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19, 37, 61, 151, 643$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{14} + \frac{1}{4} a^{13} + \frac{1}{4} a^{11} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{777511084084192710568975837049860607009409881675115411792628828095271213178296111999152439553889692188252877900228972} a^{17} - \frac{33193522478555961110154224210863185894914144144554788681467480279777545412213189308097921057968974496886858861899319}{777511084084192710568975837049860607009409881675115411792628828095271213178296111999152439553889692188252877900228972} a^{16} - \frac{121751060698883548320021986774975965325682105892079499273264925436312639946484209186705664995972903514955220937580831}{777511084084192710568975837049860607009409881675115411792628828095271213178296111999152439553889692188252877900228972} a^{15} + \frac{42041232969147800205371610526965621095180714637954957516567267114415345455199439986020277412949864374301055151290552}{194377771021048177642243959262465151752352470418778852948157207023817803294574027999788109888472423047063219475057243} a^{14} + \frac{81459094088237208685628980188082415998000844212658315765846840217121369276927532459335975229419050264422200530673193}{777511084084192710568975837049860607009409881675115411792628828095271213178296111999152439553889692188252877900228972} a^{13} + \frac{132406576258877351471617575262621662567792507414685005862415670974413285102553426209258472936330940219308457369194341}{777511084084192710568975837049860607009409881675115411792628828095271213178296111999152439553889692188252877900228972} a^{12} - \frac{117271718378742220259807689766696940911493314255490379347782641611472969380827722691038194521182770993718695035620773}{777511084084192710568975837049860607009409881675115411792628828095271213178296111999152439553889692188252877900228972} a^{11} - \frac{74720068617552599287920729208203125748410630384285759094684353843146018304695635010270598350226987469857516981146099}{777511084084192710568975837049860607009409881675115411792628828095271213178296111999152439553889692188252877900228972} a^{10} - \frac{11367753138579248036444053599631124980993889478060904857211289662943889245452632509392649746016407302417041890457341}{388755542042096355284487918524930303504704940837557705896314414047635606589148055999576219776944846094126438950114486} a^{9} + \frac{154194828411844030877728111427745150215550087306843501052211760607668598961844748842379133549226438904895185984309291}{388755542042096355284487918524930303504704940837557705896314414047635606589148055999576219776944846094126438950114486} a^{8} - \frac{27270036644686717698562190150946885164937805475640594942140682226113284057639484249197447635023116969464044088780999}{194377771021048177642243959262465151752352470418778852948157207023817803294574027999788109888472423047063219475057243} a^{7} - \frac{13364968145628898768094484090728321965780477833841836553547329586739937484962028531503902320114890586080851627513547}{59808544929553285428382756696143123616108452436547339368663756007328554859868931692242495350299207091404067530786844} a^{6} - \frac{9469953350404345773798468470969196849037062219050770643038618733423937495520606345420537993660056050583454649945417}{59808544929553285428382756696143123616108452436547339368663756007328554859868931692242495350299207091404067530786844} a^{5} + \frac{258223487886518132693584385242404890799019949227469686339872758334900856688763605048944180742634128373143214184118805}{777511084084192710568975837049860607009409881675115411792628828095271213178296111999152439553889692188252877900228972} a^{4} + \frac{41253288914706360982586835261001705493615189679082467277527794713890619205366756840392031991469230572326934651948025}{388755542042096355284487918524930303504704940837557705896314414047635606589148055999576219776944846094126438950114486} a^{3} + \frac{358852954288218596464798418768590320769159790757606777660081306274954687150155035003502954721349931404012121628008501}{777511084084192710568975837049860607009409881675115411792628828095271213178296111999152439553889692188252877900228972} a^{2} + \frac{123505739904038164746901145909405368059549236081307511487488420334478291952962070585111210316525301205999981490106305}{388755542042096355284487918524930303504704940837557705896314414047635606589148055999576219776944846094126438950114486} a - \frac{262594155727625412159587215280654878471521276334082861063952810291311429006661788825618106656557003026078316113273793}{777511084084192710568975837049860607009409881675115411792628828095271213178296111999152439553889692188252877900228972}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35145253923200000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 559872 |
| The 174 conjugacy class representatives for t18n903 are not computed |
| Character table for t18n903 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.3.148.1, 6.6.2738000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | $18$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $37$ | 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37.12.6.1 | $x^{12} + 2026120 x^{6} - 69343957 x^{2} + 1026290563600$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.6.0.1 | $x^{6} - 4 x + 10$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 151 | Data not computed | ||||||
| 643 | Data not computed | ||||||