Properties

Label 18.12.9876295693...4691.3
Degree $18$
Signature $[12, 3]$
Discriminant $-\,3^{27}\cdot 73^{3}\cdot 577^{2}$
Root discriminant $21.53$
Ramified primes $3, 73, 577$
Class number $1$
Class group Trivial
Galois group 18T879

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 9, -99, 112, 384, -237, -613, 18, 552, 237, -318, -186, 105, 51, -6, -4, -6, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^16 - 4*x^15 - 6*x^14 + 51*x^13 + 105*x^12 - 186*x^11 - 318*x^10 + 237*x^9 + 552*x^8 + 18*x^7 - 613*x^6 - 237*x^5 + 384*x^4 + 112*x^3 - 99*x^2 + 9*x + 1)
 
gp: K = bnfinit(x^18 - 6*x^16 - 4*x^15 - 6*x^14 + 51*x^13 + 105*x^12 - 186*x^11 - 318*x^10 + 237*x^9 + 552*x^8 + 18*x^7 - 613*x^6 - 237*x^5 + 384*x^4 + 112*x^3 - 99*x^2 + 9*x + 1, 1)
 

Normalized defining polynomial

\( x^{18} - 6 x^{16} - 4 x^{15} - 6 x^{14} + 51 x^{13} + 105 x^{12} - 186 x^{11} - 318 x^{10} + 237 x^{9} + 552 x^{8} + 18 x^{7} - 613 x^{6} - 237 x^{5} + 384 x^{4} + 112 x^{3} - 99 x^{2} + 9 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-987629569339089510074691=-\,3^{27}\cdot 73^{3}\cdot 577^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $21.53$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 73, 577$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{8062568390069} a^{17} + \frac{102095094465}{8062568390069} a^{16} + \frac{192145960}{2273066927} a^{15} + \frac{1997205934534}{8062568390069} a^{14} + \frac{566364616123}{8062568390069} a^{13} + \frac{1859378755308}{8062568390069} a^{12} + \frac{173281470382}{8062568390069} a^{11} + \frac{2020818403538}{8062568390069} a^{10} + \frac{1247075939045}{8062568390069} a^{9} + \frac{2305714979417}{8062568390069} a^{8} - \frac{3448348250992}{8062568390069} a^{7} + \frac{1191446399248}{8062568390069} a^{6} + \frac{101611422842}{8062568390069} a^{5} - \frac{1180194755197}{8062568390069} a^{4} + \frac{2537176290855}{8062568390069} a^{3} + \frac{4008890867794}{8062568390069} a^{2} - \frac{2056559048161}{8062568390069} a - \frac{2965178369862}{8062568390069}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 334605.67531 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T879:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 331776
The 360 conjugacy class representatives for t18n879 are not computed
Character table for t18n879 is not computed

Intermediate fields

\(\Q(\zeta_{9})^+\), 9.9.22384826361.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $18$ R ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ $18$ ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ $18$ ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ $18$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$73$73.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
73.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
73.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
73.2.1.2$x^{2} + 365$$2$$1$$1$$C_2$$[\ ]_{2}$
73.3.0.1$x^{3} - x + 14$$1$$3$$0$$C_3$$[\ ]^{3}$
73.3.0.1$x^{3} - x + 14$$1$$3$$0$$C_3$$[\ ]^{3}$
73.4.2.1$x^{4} + 1533 x^{2} + 644809$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
577Data not computed