Normalized defining polynomial
\( x^{18} + 2 x^{16} - 270 x^{14} - 313 x^{12} + 17021 x^{10} - 17547 x^{8} - 100465 x^{6} + 172382 x^{4} - 93639 x^{2} + 16807 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9462214702675879570003616342212608=-\,2^{24}\cdot 3^{6}\cdot 7^{13}\cdot 41^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{63} a^{14} - \frac{5}{63} a^{12} + \frac{10}{63} a^{10} + \frac{10}{21} a^{8} - \frac{17}{63} a^{6} + \frac{2}{63} a^{4} - \frac{1}{63} a^{2} + \frac{1}{9}$, $\frac{1}{882} a^{15} - \frac{47}{882} a^{13} - \frac{1}{6} a^{12} + \frac{73}{882} a^{11} - \frac{137}{294} a^{9} - \frac{1}{2} a^{8} - \frac{40}{441} a^{7} + \frac{169}{441} a^{5} + \frac{1}{3} a^{4} + \frac{83}{882} a^{3} + \frac{1}{3} a^{2} - \frac{5}{18} a - \frac{1}{2}$, $\frac{1}{195875625657384414} a^{16} + \frac{281631127113199}{65291875219128138} a^{14} - \frac{1}{6} a^{13} - \frac{636855674352715}{65291875219128138} a^{12} - \frac{30763560466312987}{195875625657384414} a^{10} - \frac{1}{2} a^{9} - \frac{38773322574544360}{97937812828692207} a^{8} - \frac{24697960056634423}{97937812828692207} a^{6} + \frac{1}{3} a^{5} - \frac{5286138391296229}{65291875219128138} a^{4} + \frac{1}{3} a^{3} - \frac{1888327988491531}{3997461748109886} a^{2} - \frac{1}{2} a + \frac{8165680175356}{285532982007849}$, $\frac{1}{1371129379601690898} a^{17} - \frac{354837538129346}{685564689800845449} a^{15} - \frac{1}{126} a^{14} - \frac{62360737586661488}{685564689800845449} a^{13} + \frac{5}{126} a^{12} - \frac{72123528935494042}{685564689800845449} a^{11} + \frac{11}{126} a^{10} - \frac{613872763020498425}{1371129379601690898} a^{9} + \frac{11}{42} a^{8} - \frac{17598983045565253}{76173854422316161} a^{7} - \frac{23}{63} a^{6} + \frac{242199948787427287}{1371129379601690898} a^{5} - \frac{1}{63} a^{4} - \frac{251198700018983}{1554568457598289} a^{3} - \frac{41}{126} a^{2} - \frac{2199218077007}{571065964015698} a - \frac{7}{18}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 55060544445.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n657 are not computed |
| Character table for t18n657 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.574470067776192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.12.24.233 | $x^{12} + 44 x^{11} + 14 x^{10} + 36 x^{9} - 50 x^{8} - 48 x^{6} + 64 x^{5} - 60 x^{4} + 48 x^{3} + 24 x^{2} - 48 x + 56$ | $4$ | $3$ | $24$ | 12T58 | $[2, 2, 2, 3, 3]^{3}$ | |
| $3$ | 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| 41 | Data not computed | ||||||