Normalized defining polynomial
\( x^{18} - 48 x^{16} - 32 x^{15} + 918 x^{14} + 1224 x^{13} - 8986 x^{12} - 17820 x^{11} + 46281 x^{10} + 128312 x^{9} - 106974 x^{8} - 491964 x^{7} + 15065 x^{6} + 985140 x^{5} + 310128 x^{4} - 1003392 x^{3} - 316368 x^{2} + 616512 x - 140608 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-871847571394253513930693071110930432=-\,2^{30}\cdot 3^{18}\cdot 7^{12}\cdot 13^{3}\cdot 41^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $99.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{104} a^{15} + \frac{1}{26} a^{13} - \frac{3}{52} a^{12} + \frac{1}{13} a^{11} + \frac{1}{52} a^{10} + \frac{5}{52} a^{9} + \frac{2}{13} a^{8} - \frac{25}{104} a^{7} + \frac{7}{26} a^{6} + \frac{2}{13} a^{5} - \frac{11}{26} a^{4} + \frac{37}{104} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{22256} a^{16} + \frac{37}{11128} a^{15} + \frac{140}{1391} a^{14} + \frac{215}{2782} a^{13} - \frac{1141}{11128} a^{12} + \frac{77}{5564} a^{11} + \frac{1275}{11128} a^{10} - \frac{263}{2782} a^{9} - \frac{4951}{22256} a^{8} - \frac{79}{11128} a^{7} - \frac{4975}{11128} a^{6} + \frac{487}{2782} a^{5} - \frac{3271}{22256} a^{4} - \frac{5469}{11128} a^{3} + \frac{49}{107} a^{2} + \frac{27}{214} a + \frac{21}{107}$, $\frac{1}{231661920505459503074904226553696} a^{17} + \frac{37044517908136036886332253}{4455036932797298136055850510648} a^{16} + \frac{186292487668262156103047006779}{57915480126364875768726056638424} a^{15} + \frac{24318118670669990279054635186}{7239435015795609471090757079803} a^{14} - \frac{2248126483197320408203078349489}{115830960252729751537452113276848} a^{13} - \frac{1526702194057937508699984399935}{28957740063182437884363028319212} a^{12} + \frac{11062784845050999714815706980115}{115830960252729751537452113276848} a^{11} - \frac{11383222594517534582891571896533}{57915480126364875768726056638424} a^{10} - \frac{23561422131953868582189412070063}{231661920505459503074904226553696} a^{9} - \frac{3468685719098691376690880005459}{57915480126364875768726056638424} a^{8} - \frac{1720479906966418289434812231401}{115830960252729751537452113276848} a^{7} - \frac{5408831407500902788017352521115}{57915480126364875768726056638424} a^{6} + \frac{30630061535498288126148742648465}{231661920505459503074904226553696} a^{5} - \frac{45345992540629883820986517555}{2227518466398649068027925255324} a^{4} + \frac{1132098410754624783644832661673}{4455036932797298136055850510648} a^{3} - \frac{79747990088437369483288039296}{556879616599662267006981313831} a^{2} - \frac{279289383829069391886332950}{42836893584589405154383177987} a - \frac{16800520625526327217830284043}{42836893584589405154383177987}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 479621575786 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1119744 |
| The 267 conjugacy class representatives for t18n926 are not computed |
| Character table for t18n926 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.6.6300224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | $18$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ |
| 2.12.24.284 | $x^{12} + 8 x^{11} - 14 x^{10} - 8 x^{9} + 8 x^{8} + 16 x^{7} - 8 x^{6} - 4 x^{4} + 16 x^{2} + 16 x + 8$ | $4$ | $3$ | $24$ | 12T92 | $[2, 2, 2, 3, 3]^{6}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.3.0.1 | $x^{3} - x + 13$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.6.0.1 | $x^{6} - x + 7$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |