Normalized defining polynomial
\( x^{18} + 4 x^{16} - 337 x^{14} - 1097 x^{12} + 19399 x^{10} + 35318 x^{8} - 262504 x^{6} + 264491 x^{4} - 82041 x^{2} + 6929 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-865961613414533621361938102747136=-\,2^{18}\cdot 3^{6}\cdot 7^{12}\cdot 41^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} - \frac{5}{16} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a + \frac{3}{16}$, $\frac{1}{16} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{5}{16} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{3}{16} a$, $\frac{1}{464} a^{14} + \frac{9}{464} a^{12} + \frac{7}{116} a^{10} + \frac{6}{29} a^{8} - \frac{1}{4} a^{7} - \frac{103}{464} a^{6} - \frac{191}{464} a^{4} - \frac{1}{4} a^{3} - \frac{213}{464} a^{2} - \frac{1}{4} a - \frac{27}{464}$, $\frac{1}{928} a^{15} + \frac{9}{928} a^{13} - \frac{1}{32} a^{12} - \frac{11}{116} a^{11} - \frac{1}{16} a^{10} - \frac{5}{232} a^{9} + \frac{3}{16} a^{8} - \frac{219}{928} a^{7} - \frac{3}{16} a^{6} - \frac{423}{928} a^{5} - \frac{11}{32} a^{4} + \frac{135}{928} a^{3} + \frac{1}{8} a^{2} - \frac{27}{928} a - \frac{3}{32}$, $\frac{1}{3506125335260741344} a^{16} + \frac{2504924071976269}{3506125335260741344} a^{14} - \frac{1}{32} a^{13} + \frac{50556383195406043}{1753062667630370672} a^{12} - \frac{1}{16} a^{11} - \frac{10398585262104117}{438265666907592668} a^{10} - \frac{1}{16} a^{9} + \frac{659022617619809729}{3506125335260741344} a^{8} - \frac{3}{16} a^{7} - \frac{30156766413014071}{3506125335260741344} a^{6} + \frac{13}{32} a^{5} - \frac{388559218892427015}{3506125335260741344} a^{4} - \frac{1}{8} a^{3} - \frac{261813031578650199}{3506125335260741344} a^{2} - \frac{3}{32} a - \frac{665163080740428691}{1753062667630370672}$, $\frac{1}{45579629358389637472} a^{17} + \frac{17617533275686361}{45579629358389637472} a^{15} - \frac{1}{928} a^{14} - \frac{538835375749287545}{22789814679194818736} a^{13} + \frac{5}{232} a^{12} - \frac{252668268341804815}{2848726834899352342} a^{11} - \frac{43}{464} a^{10} - \frac{4902417569345504127}{45579629358389637472} a^{9} - \frac{77}{464} a^{8} - \frac{1586755514395153547}{45579629358389637472} a^{7} - \frac{71}{928} a^{6} + \frac{7681574095888762113}{45579629358389637472} a^{5} - \frac{209}{464} a^{4} - \frac{10493049462490382483}{45579629358389637472} a^{3} + \frac{445}{928} a^{2} + \frac{3732606197539208081}{22789814679194818736} a - \frac{59}{464}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14716221116.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n657 are not computed |
| Character table for t18n657 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.574470067776192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.4 | $x^{6} + x^{2} + 1$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| $41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.6.5.2 | $x^{6} + 246$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 41.6.4.1 | $x^{6} + 1435 x^{3} + 2904768$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |