Normalized defining polynomial
\( x^{18} - 6 x^{17} - 33 x^{16} + 230 x^{15} + 290 x^{14} - 3178 x^{13} + 936 x^{12} + 15544 x^{11} - 23453 x^{10} + 48204 x^{9} + 73884 x^{8} - 850430 x^{7} + 244572 x^{6} + 3611310 x^{5} - 1822347 x^{4} - 6573762 x^{3} + 3621940 x^{2} + 4327624 x - 2563673 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-865961613414533621361938102747136=-\,2^{18}\cdot 3^{6}\cdot 7^{12}\cdot 41^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7} a^{14} - \frac{3}{7} a^{13} - \frac{1}{7} a^{12} - \frac{3}{7} a^{11} + \frac{2}{7} a^{10} + \frac{1}{7} a^{9} - \frac{3}{7} a^{8} + \frac{1}{7} a^{7} + \frac{3}{7} a^{6} + \frac{3}{7} a^{5} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{15} - \frac{3}{7} a^{13} + \frac{1}{7} a^{12} - \frac{1}{7} a^{8} - \frac{1}{7} a^{7} - \frac{2}{7} a^{6} + \frac{2}{7} a^{5} - \frac{1}{7} a^{4} - \frac{3}{7} a^{3}$, $\frac{1}{7} a^{16} - \frac{1}{7} a^{13} - \frac{3}{7} a^{12} - \frac{2}{7} a^{11} - \frac{1}{7} a^{10} + \frac{2}{7} a^{9} - \frac{3}{7} a^{8} + \frac{1}{7} a^{7} - \frac{3}{7} a^{6} + \frac{1}{7} a^{5} - \frac{3}{7} a^{4} - \frac{3}{7} a^{3}$, $\frac{1}{1458995765257427350972926821443182179313901751} a^{17} + \frac{35853984145192964701345686549789393408899894}{1458995765257427350972926821443182179313901751} a^{16} - \frac{39503292717758170553010673757860436765051679}{1458995765257427350972926821443182179313901751} a^{15} - \frac{21478185202702294594876412735762103930714137}{1458995765257427350972926821443182179313901751} a^{14} + \frac{242091482405116862444908236608564421922107553}{1458995765257427350972926821443182179313901751} a^{13} + \frac{139822734153494817507518684523389219796652866}{1458995765257427350972926821443182179313901751} a^{12} - \frac{94983288482397022299582293136907556609953993}{208427966465346764424703831634740311330557393} a^{11} - \frac{582712101199485820773779512001503548157962839}{1458995765257427350972926821443182179313901751} a^{10} - \frac{375836866568940742474299298883012819126348868}{1458995765257427350972926821443182179313901751} a^{9} - \frac{105266458475816579572242007389560651030660321}{1458995765257427350972926821443182179313901751} a^{8} + \frac{271883771663130936938937033322397842305624979}{1458995765257427350972926821443182179313901751} a^{7} + \frac{94831847843831162707446032368411234666344549}{1458995765257427350972926821443182179313901751} a^{6} + \frac{715067481422572088540059157657584145844552140}{1458995765257427350972926821443182179313901751} a^{5} + \frac{591674205235869246133282163760821006787705122}{1458995765257427350972926821443182179313901751} a^{4} + \frac{5825868429579155469834203459209314584740224}{1458995765257427350972926821443182179313901751} a^{3} - \frac{47276146893847067818182069931084528477423651}{208427966465346764424703831634740311330557393} a^{2} - \frac{71146025783756689668669344300471216630931718}{208427966465346764424703831634740311330557393} a + \frac{48568832116466300455394223858748821613379704}{208427966465346764424703831634740311330557393}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25173934569.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n657 are not computed |
| Character table for t18n657 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.574470067776192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.4 | $x^{6} + x^{2} + 1$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 41 | Data not computed | ||||||