Normalized defining polynomial
\( x^{18} - 42 x^{16} - 65 x^{15} + 540 x^{14} + 1110 x^{13} - 4261 x^{12} - 10992 x^{11} + 21036 x^{10} + 88668 x^{9} + 53907 x^{8} - 122169 x^{7} - 200931 x^{6} - 74706 x^{5} + 56496 x^{4} + 78674 x^{3} + 48510 x^{2} + 17160 x + 2416 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8639459804616015706536001649246208=-\,2^{20}\cdot 3^{21}\cdot 31^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{14} - \frac{1}{8} a^{12} - \frac{1}{2} a^{11} + \frac{1}{8} a^{10} + \frac{1}{8} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} + \frac{3}{8} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{928} a^{16} - \frac{3}{232} a^{15} - \frac{79}{928} a^{14} + \frac{39}{928} a^{13} - \frac{13}{928} a^{12} - \frac{457}{928} a^{11} - \frac{23}{58} a^{10} - \frac{187}{928} a^{9} - \frac{45}{116} a^{8} + \frac{163}{928} a^{7} - \frac{49}{928} a^{6} - \frac{71}{232} a^{5} - \frac{19}{464} a^{4} + \frac{61}{464} a^{3} + \frac{99}{464} a^{2} - \frac{9}{116} a + \frac{5}{58}$, $\frac{1}{1173683114986510276621819627431232} a^{17} + \frac{542778031852367029884985358573}{1173683114986510276621819627431232} a^{16} + \frac{58449354264085777085672051236037}{1173683114986510276621819627431232} a^{15} + \frac{324651254335702469717852017291}{5058978943907371881990601842376} a^{14} - \frac{73025589528275876349123279932603}{586841557493255138310909813715616} a^{13} + \frac{138655534434622610327060584082849}{586841557493255138310909813715616} a^{12} - \frac{279755356787836336701097666266681}{1173683114986510276621819627431232} a^{11} + \frac{162971590856870794056918918664453}{1173683114986510276621819627431232} a^{10} + \frac{124599227671024073289037375785405}{1173683114986510276621819627431232} a^{9} - \frac{474576354313507369042932796340461}{1173683114986510276621819627431232} a^{8} - \frac{8027460702686389013924235742107}{586841557493255138310909813715616} a^{7} - \frac{308455563786381388596395625945365}{1173683114986510276621819627431232} a^{6} - \frac{71119476087956874608556187806741}{586841557493255138310909813715616} a^{5} + \frac{95672923937283133909146618296161}{293420778746627569155454906857808} a^{4} - \frac{6273307617229131580090614371286}{18338798671664223072215931678613} a^{3} - \frac{226289204624267197218497577554361}{586841557493255138310909813715616} a^{2} + \frac{44536177318710741609299844427071}{146710389373313784577727453428904} a - \frac{20071457252430743386743298646513}{73355194686656892288863726714452}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 438360052348 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2592 |
| The 44 conjugacy class representatives for t18n401 |
| Character table for t18n401 is not computed |
Intermediate fields
| 3.3.961.1, 6.4.398961072.1, 9.7.1117999036999872.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.8.1 | $x^{4} + 2 x^{2} + 4 x + 10$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3 | Data not computed | ||||||
| $31$ | 31.9.6.1 | $x^{9} + 837 x^{6} + 232562 x^{3} + 21717639$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 31.9.6.1 | $x^{9} + 837 x^{6} + 232562 x^{3} + 21717639$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |