Normalized defining polynomial
\( x^{18} - 3 x^{17} - 18 x^{16} + 55 x^{15} - 12 x^{14} + 36 x^{13} + 170 x^{12} - 309 x^{11} + 786 x^{10} + 899 x^{9} - 6411 x^{8} - 8799 x^{7} + 7440 x^{6} + 14742 x^{5} - 228 x^{4} - 7179 x^{3} - 1791 x^{2} + 558 x + 127 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-80716670418377815414668988416=-\,2^{12}\cdot 3^{24}\cdot 7^{12}\cdot 71^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{13} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{11} - \frac{1}{2} a^{10} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{40} a^{15} + \frac{1}{10} a^{14} + \frac{1}{40} a^{13} + \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{8} a^{9} + \frac{3}{20} a^{8} + \frac{13}{40} a^{7} - \frac{19}{40} a^{6} + \frac{13}{40} a^{5} - \frac{1}{4} a^{4} - \frac{1}{5} a^{3} - \frac{17}{40} a^{2} - \frac{1}{8} a + \frac{7}{40}$, $\frac{1}{80} a^{16} - \frac{1}{80} a^{15} - \frac{9}{80} a^{14} - \frac{1}{8} a^{13} + \frac{1}{16} a^{12} - \frac{1}{4} a^{11} + \frac{1}{16} a^{10} - \frac{39}{80} a^{9} - \frac{37}{80} a^{8} - \frac{3}{10} a^{7} - \frac{1}{40} a^{6} + \frac{5}{16} a^{5} - \frac{1}{10} a^{4} - \frac{27}{80} a^{3} + \frac{3}{8} a^{2} - \frac{1}{10} a - \frac{5}{16}$, $\frac{1}{528807304436529247256141723360} a^{17} + \frac{69130233664261526731189444}{16525228263641538976754428855} a^{16} - \frac{2531720896460518194004864259}{264403652218264623628070861680} a^{15} + \frac{21452383878585410131426564089}{528807304436529247256141723360} a^{14} + \frac{10394968929289033237193235871}{105761460887305849451228344672} a^{13} - \frac{4331513135254283921740001471}{105761460887305849451228344672} a^{12} + \frac{11853923913170702676048779185}{105761460887305849451228344672} a^{11} - \frac{77967754211902116192151110207}{264403652218264623628070861680} a^{10} - \frac{64531344074253321130306338677}{132201826109132311814035430840} a^{9} - \frac{210761386836733372033857742757}{528807304436529247256141723360} a^{8} - \frac{45094829959461108009186577499}{264403652218264623628070861680} a^{7} + \frac{2380572207137028335088283487}{528807304436529247256141723360} a^{6} + \frac{251866183681848638620591570317}{528807304436529247256141723360} a^{5} - \frac{54860286937191076295601354439}{528807304436529247256141723360} a^{4} - \frac{190267308111013524271676819393}{528807304436529247256141723360} a^{3} + \frac{81765095688448778659220943611}{264403652218264623628070861680} a^{2} + \frac{214521305427862272233767404003}{528807304436529247256141723360} a - \frac{36655762133797112494633289829}{105761460887305849451228344672}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 143010703.79 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4608 |
| The 96 conjugacy class representatives for t18n459 are not computed |
| Character table for t18n459 is not computed |
Intermediate fields
| 3.3.3969.2, \(\Q(\zeta_{9})^+\), 3.3.3969.1, \(\Q(\zeta_{7})^+\), 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 71 | Data not computed | ||||||