Normalized defining polynomial
\( x^{18} - 25x^{14} + 3x^{12} + 115x^{10} - 50x^{8} - 136x^{6} + 115x^{4} - 25x^{2} + 1 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[12, 3]$ |
| |
| Discriminant: |
\(-80421398252924334225227776\)
\(\medspace = -\,2^{18}\cdot 7^{12}\cdot 53^{6}\)
|
| |
| Root discriminant: | \(27.49\) |
| |
| Galois root discriminant: | $2^{31/16}7^{2/3}53^{1/2}\approx 102.04277129514405$ | ||
| Ramified primes: |
\(2\), \(7\), \(53\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{4}-\frac{1}{2}a^{2}-\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{4}a$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{6}-\frac{1}{2}a^{4}-\frac{1}{4}a^{2}$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{7}-\frac{1}{2}a^{5}-\frac{1}{4}a^{3}$, $\frac{1}{21668}a^{16}-\frac{412}{5417}a^{14}+\frac{981}{10834}a^{12}+\frac{144}{5417}a^{10}+\frac{4259}{21668}a^{8}+\frac{775}{10834}a^{6}+\frac{7705}{21668}a^{4}+\frac{1285}{5417}a^{2}-\frac{1987}{10834}$, $\frac{1}{21668}a^{17}-\frac{412}{5417}a^{15}+\frac{981}{10834}a^{13}+\frac{144}{5417}a^{11}+\frac{4259}{21668}a^{9}+\frac{775}{10834}a^{7}+\frac{7705}{21668}a^{5}+\frac{1285}{5417}a^{3}-\frac{1987}{10834}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $14$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{3563}{21668}a^{16}+\frac{51}{5417}a^{14}-\frac{89413}{21668}a^{12}+\frac{2331}{10834}a^{10}+\frac{418909}{21668}a^{8}-\frac{66349}{10834}a^{6}-\frac{134181}{5417}a^{4}+\frac{76928}{5417}a^{2}-\frac{4741}{21668}$, $\frac{3563}{21668}a^{16}+\frac{51}{5417}a^{14}-\frac{89413}{21668}a^{12}+\frac{2331}{10834}a^{10}+\frac{418909}{21668}a^{8}-\frac{66349}{10834}a^{6}-\frac{134181}{5417}a^{4}+\frac{76928}{5417}a^{2}-\frac{26409}{21668}$, $\frac{4741}{21668}a^{17}+\frac{3563}{21668}a^{15}-\frac{118321}{21668}a^{13}-\frac{37595}{10834}a^{11}+\frac{549877}{21668}a^{9}+\frac{181859}{21668}a^{7}-\frac{388737}{10834}a^{5}+\frac{8491}{21668}a^{3}+\frac{189187}{21668}a$, $\frac{889}{10834}a^{16}+\frac{453}{21668}a^{14}-\frac{10862}{5417}a^{12}-\frac{2551}{10834}a^{10}+\frac{91857}{10834}a^{8}-\frac{55523}{21668}a^{6}-\frac{105683}{10834}a^{4}+\frac{184619}{21668}a^{2}-\frac{5918}{5417}$, $\frac{4194}{5417}a^{17}+\frac{6937}{21668}a^{15}-\frac{416289}{21668}a^{13}-\frac{60063}{10834}a^{11}+\frac{468259}{5417}a^{9}-\frac{101723}{21668}a^{7}-\frac{2281931}{21668}a^{5}+\frac{1078817}{21668}a^{3}-\frac{76643}{21668}a$, $\frac{579}{21668}a^{17}+\frac{4617}{21668}a^{15}-\frac{6203}{10834}a^{13}-\frac{55345}{10834}a^{11}+\frac{28311}{21668}a^{9}+\frac{437005}{21668}a^{7}-\frac{56583}{21668}a^{5}-\frac{409565}{21668}a^{3}+\frac{34176}{5417}a$, $\frac{8959}{21668}a^{16}+\frac{1155}{10834}a^{14}-\frac{55676}{5417}a^{12}-\frac{14551}{10834}a^{10}+\frac{1006595}{21668}a^{8}-\frac{109709}{10834}a^{6}-\frac{1207727}{21668}a^{4}+\frac{196202}{5417}a^{2}-\frac{30429}{5417}$, $\frac{2553}{5417}a^{17}+\frac{1243}{21668}a^{15}-\frac{128069}{10834}a^{13}-\frac{375}{10834}a^{11}+\frac{299243}{5417}a^{9}-\frac{362813}{21668}a^{7}-\frac{749487}{10834}a^{5}+\frac{1011929}{21668}a^{3}-\frac{69583}{10834}a$, $\frac{1893}{21668}a^{17}-\frac{5493}{21668}a^{16}+\frac{132}{5417}a^{15}-\frac{1190}{5417}a^{14}-\frac{11333}{5417}a^{13}+\frac{33143}{5417}a^{12}-\frac{1933}{10834}a^{11}+\frac{48533}{10834}a^{10}+\frac{175135}{21668}a^{9}-\frac{534947}{21668}a^{8}-\frac{27551}{5417}a^{7}-\frac{40284}{5417}a^{6}-\frac{170343}{21668}a^{5}+\frac{600743}{21668}a^{4}+\frac{70693}{5417}a^{3}-\frac{38073}{5417}a^{2}-\frac{19956}{5417}a-\frac{5749}{5417}$, $\frac{1259}{10834}a^{17}+\frac{7297}{21668}a^{16}+\frac{2648}{5417}a^{15}+\frac{5701}{21668}a^{14}-\frac{27079}{10834}a^{13}-\frac{89589}{10834}a^{12}-\frac{125285}{10834}a^{11}-\frac{59847}{10834}a^{10}+\frac{53421}{10834}a^{9}+\frac{775225}{21668}a^{8}+\frac{239013}{5417}a^{7}+\frac{275921}{21668}a^{6}+\frac{14999}{10834}a^{5}-\frac{904297}{21668}a^{4}-\frac{457083}{10834}a^{3}+\frac{37191}{21668}a^{2}+\frac{38940}{5417}a+\frac{1085}{5417}$, $\frac{75}{21668}a^{17}+\frac{4779}{10834}a^{16}-\frac{2213}{10834}a^{15}+\frac{263}{5417}a^{14}-\frac{2263}{10834}a^{13}-\frac{119603}{10834}a^{12}+\frac{27051}{5417}a^{11}+\frac{434}{5417}a^{10}+\frac{59409}{21668}a^{9}+\frac{277313}{5417}a^{8}-\frac{114488}{5417}a^{7}-\frac{170933}{10834}a^{6}-\frac{50497}{21668}a^{5}-\frac{695947}{10834}a^{4}+\frac{263171}{10834}a^{3}+\frac{223788}{5417}a^{2}-\frac{105689}{10834}a-\frac{21540}{5417}$, $\frac{14371}{21668}a^{17}-\frac{15371}{21668}a^{16}-\frac{5701}{21668}a^{15}-\frac{3901}{21668}a^{14}-\frac{181261}{10834}a^{13}+\frac{95786}{5417}a^{12}+\frac{92349}{10834}a^{11}+\frac{12963}{5417}a^{10}+\frac{1716595}{21668}a^{9}-\frac{1750335}{21668}a^{8}-\frac{1359321}{21668}a^{7}+\frac{307685}{21668}a^{6}-\frac{2042551}{21668}a^{5}+\frac{2138031}{21668}a^{4}+\frac{2454629}{21668}a^{3}-\frac{1170067}{21668}a^{2}-\frac{136510}{5417}a+\frac{76969}{10834}$, $\frac{3295}{21668}a^{17}-\frac{7743}{21668}a^{16}-\frac{7743}{21668}a^{15}-\frac{7405}{21668}a^{14}-\frac{22445}{5417}a^{13}+\frac{187097}{21668}a^{12}+\frac{98491}{10834}a^{11}+\frac{38829}{5417}a^{10}+\frac{534241}{21668}a^{9}-\frac{757121}{21668}a^{8}-\frac{921871}{21668}a^{7}-\frac{328015}{21668}a^{6}-\frac{776135}{21668}a^{5}+\frac{202539}{5417}a^{4}+\frac{1189081}{21668}a^{3}-\frac{141163}{21668}a^{2}-\frac{111769}{10834}a-\frac{3295}{21668}$, $\frac{7817}{21668}a^{17}+\frac{3563}{21668}a^{16}+\frac{4627}{21668}a^{15}+\frac{51}{5417}a^{14}-\frac{193585}{21668}a^{13}-\frac{89413}{21668}a^{12}-\frac{22756}{5417}a^{11}+\frac{2331}{10834}a^{10}+\frac{866441}{21668}a^{9}+\frac{418909}{21668}a^{8}+\frac{117695}{21668}a^{7}-\frac{66349}{10834}a^{6}-\frac{268551}{5417}a^{5}-\frac{134181}{5417}a^{4}+\frac{294009}{21668}a^{3}+\frac{76928}{5417}a^{2}+\frac{66741}{21668}a-\frac{4741}{21668}$
|
| |
| Regulator: | \( 3126708.06364 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{3}\cdot 3126708.06364 \cdot 1}{2\cdot\sqrt{80421398252924334225227776}}\cr\approx \mathstrut & 0.177121418308 \end{aligned}\] (assuming GRH)
Galois group
$A_4^2:C_2^2$ (as 18T175):
| A solvable group of order 576 |
| The 28 conjugacy class representatives for $A_4^2:C_2^2$ |
| Character table for $A_4^2:C_2^2$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 3.3.2597.1, 9.9.17515230173.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | 12.4.217975320865705984.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{3}$ | ${\href{/padicField/5.6.0.1}{6} }^{2}{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}$ | R | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }^{4}$ | ${\href{/padicField/13.3.0.1}{3} }^{6}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{3}$ | ${\href{/padicField/23.6.0.1}{6} }^{3}$ | ${\href{/padicField/29.3.0.1}{3} }^{6}$ | ${\href{/padicField/31.6.0.1}{6} }^{3}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{4}$ | R | ${\href{/padicField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.3.2.6a2.2 | $x^{6} + 4 x^{4} + 2 x^{3} + 3 x^{2} + 4 x + 7$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $$[2, 2, 2]^{3}$$ |
| 2.6.2.12a6.1 | $x^{12} + 4 x^{10} + 4 x^{9} + 3 x^{8} + 8 x^{7} + 7 x^{6} + 4 x^{5} + 10 x^{4} + 6 x^{3} + x^{2} + 4 x + 5$ | $2$ | $6$ | $12$ | 12T87 | $$[2, 2, 2, 2, 2]^{6}$$ | |
|
\(7\)
| 7.6.3.12a1.3 | $x^{18} + 3 x^{16} + 15 x^{15} + 15 x^{14} + 48 x^{13} + 109 x^{12} + 171 x^{11} + 333 x^{10} + 497 x^{9} + 717 x^{8} + 1032 x^{7} + 1216 x^{6} + 1296 x^{5} + 1143 x^{4} + 783 x^{3} + 432 x^{2} + 162 x + 34$ | $3$ | $6$ | $12$ | $C_6 \times C_3$ | $$[\ ]_{3}^{6}$$ |
|
\(53\)
| 53.3.1.0a1.1 | $x^{3} + 3 x + 51$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
| 53.3.1.0a1.1 | $x^{3} + 3 x + 51$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 53.3.2.3a1.2 | $x^{6} + 6 x^{4} + 102 x^{3} + 9 x^{2} + 306 x + 2654$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
| 53.3.2.3a1.2 | $x^{6} + 6 x^{4} + 102 x^{3} + 9 x^{2} + 306 x + 2654$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ |