Normalized defining polynomial
\( x^{18} - x^{17} - 32 x^{16} + 27 x^{15} + 202 x^{14} + 590 x^{13} + 528 x^{12} - 13126 x^{11} - 14019 x^{10} + 103449 x^{9} + 75962 x^{8} - 452057 x^{7} - 26460 x^{6} + 931975 x^{5} - 604143 x^{4} - 542146 x^{3} + 958638 x^{2} - 33940 x - 435877 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-757543287754796256482850550567=-\,7^{13}\cdot 52879^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 52879$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{14} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{76680512660818071787838574879678765285526928482401} a^{17} + \frac{7073551850017815724556821200017395484902973818441}{76680512660818071787838574879678765285526928482401} a^{16} - \frac{281808188663729458991124773903820395643256291226}{76680512660818071787838574879678765285526928482401} a^{15} + \frac{4219430630471122931089026641028941529088812254534}{76680512660818071787838574879678765285526928482401} a^{14} - \frac{36979705570325230794411497387196208573854407695559}{76680512660818071787838574879678765285526928482401} a^{13} - \frac{3416360986206418655481787741617883398787531518367}{76680512660818071787838574879678765285526928482401} a^{12} - \frac{35538594332702879687382104992984540341100870714637}{76680512660818071787838574879678765285526928482401} a^{11} + \frac{33989211490636229217384336290605242859278270859615}{76680512660818071787838574879678765285526928482401} a^{10} - \frac{1426181913786044247673690067627179569929336981822}{76680512660818071787838574879678765285526928482401} a^{9} - \frac{4071962494529984908946746413452972592261811933876}{76680512660818071787838574879678765285526928482401} a^{8} + \frac{27774220926741289961224049850243391243425274037284}{76680512660818071787838574879678765285526928482401} a^{7} + \frac{18662668472199294529556832907432888933051390132753}{76680512660818071787838574879678765285526928482401} a^{6} - \frac{420291438585918079201405367957175453241740985429}{25560170886939357262612858293226255095175642827467} a^{5} - \frac{9281716452962275734031021696336505667564593781834}{25560170886939357262612858293226255095175642827467} a^{4} + \frac{19447483139549887800474665292057875737937088545863}{76680512660818071787838574879678765285526928482401} a^{3} + \frac{18248351332858489533908039005435917965548022247476}{76680512660818071787838574879678765285526928482401} a^{2} - \frac{31983703905082177472830774145108155045041292949285}{76680512660818071787838574879678765285526928482401} a + \frac{1724859411461526236542454605972380522134372074366}{76680512660818071787838574879678765285526928482401}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 361973002.521 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 110 conjugacy class representatives for t18n767 are not computed |
| Character table for t18n767 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.7.6221161471.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | $18$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| 52879 | Data not computed | ||||||