Normalized defining polynomial
\( x^{18} - 5 x^{17} - 4 x^{16} + 43 x^{15} + 8 x^{14} - 155 x^{13} - 61 x^{12} + 240 x^{11} + 252 x^{10} + 97 x^{9} - 317 x^{8} - 773 x^{7} - 204 x^{6} + 548 x^{5} + 566 x^{4} + 413 x^{3} - 81 x^{2} - 416 x - 169 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-71271401597539257710128347=-\,3^{3}\cdot 1129^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 1129$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} + \frac{3}{13} a^{13} - \frac{5}{13} a^{12} - \frac{3}{13} a^{11} + \frac{4}{13} a^{10} - \frac{3}{13} a^{9} - \frac{2}{13} a^{8} + \frac{3}{13} a^{7} + \frac{2}{13} a^{6} + \frac{4}{13} a^{5} + \frac{2}{13} a^{4} - \frac{4}{13} a^{3} + \frac{3}{13} a^{2} + \frac{4}{13} a$, $\frac{1}{13} a^{15} - \frac{1}{13} a^{13} - \frac{1}{13} a^{12} - \frac{2}{13} a^{10} - \frac{6}{13} a^{9} - \frac{4}{13} a^{8} + \frac{6}{13} a^{7} - \frac{2}{13} a^{6} + \frac{3}{13} a^{5} + \frac{3}{13} a^{4} + \frac{2}{13} a^{3} - \frac{5}{13} a^{2} + \frac{1}{13} a$, $\frac{1}{13} a^{16} + \frac{2}{13} a^{13} - \frac{5}{13} a^{12} - \frac{5}{13} a^{11} - \frac{2}{13} a^{10} + \frac{6}{13} a^{9} + \frac{4}{13} a^{8} + \frac{1}{13} a^{7} + \frac{5}{13} a^{6} - \frac{6}{13} a^{5} + \frac{4}{13} a^{4} + \frac{4}{13} a^{3} + \frac{4}{13} a^{2} + \frac{4}{13} a$, $\frac{1}{212738877871} a^{17} - \frac{8046384403}{212738877871} a^{16} - \frac{337162298}{16364529067} a^{15} - \frac{3259372677}{212738877871} a^{14} - \frac{89364849575}{212738877871} a^{13} + \frac{82749260738}{212738877871} a^{12} + \frac{78973026115}{212738877871} a^{11} + \frac{3112089670}{16364529067} a^{10} - \frac{12070377684}{212738877871} a^{9} + \frac{28119608571}{212738877871} a^{8} - \frac{57694808573}{212738877871} a^{7} + \frac{7647057825}{16364529067} a^{6} + \frac{80055969973}{212738877871} a^{5} + \frac{33211355829}{212738877871} a^{4} - \frac{120715517}{16364529067} a^{3} + \frac{10005555896}{212738877871} a^{2} + \frac{36496110940}{212738877871} a - \frac{3563929054}{16364529067}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3718494.22814 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^2:D_9$ (as 18T67):
| A solvable group of order 144 |
| The 18 conjugacy class representatives for $C_2\times C_2^2:D_9$ |
| Character table for $C_2\times C_2^2:D_9$ |
Intermediate fields
| 3.3.1129.1, 6.4.3823923.1, 9.9.1624709678881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 1129 | Data not computed | ||||||