Normalized defining polynomial
\( x^{18} - 5 x^{17} - 19 x^{16} + 157 x^{15} - 138 x^{14} - 1018 x^{13} + 2248 x^{12} + 1960 x^{11} - 9145 x^{10} + 1080 x^{9} + 16119 x^{8} - 6506 x^{7} - 13454 x^{6} + 5204 x^{5} + 5064 x^{4} - 1088 x^{3} - 280 x^{2} + 288 x + 32 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-68835522420844686611068124224=-\,2^{6}\cdot 32009^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 32009$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{40} a^{16} - \frac{3}{40} a^{15} - \frac{1}{40} a^{14} + \frac{3}{40} a^{13} + \frac{1}{10} a^{12} + \frac{1}{20} a^{11} - \frac{3}{10} a^{10} + \frac{1}{10} a^{9} + \frac{3}{8} a^{8} + \frac{3}{20} a^{7} + \frac{11}{40} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{10} a^{3} + \frac{3}{10} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{1273709752818354750400} a^{17} - \frac{10588252592989381199}{1273709752818354750400} a^{16} - \frac{48978274431410838013}{1273709752818354750400} a^{15} - \frac{80177523329632635121}{1273709752818354750400} a^{14} - \frac{10888549032705157729}{79606859551147171900} a^{13} - \frac{60582435140879178501}{636854876409177375200} a^{12} - \frac{55502270106701280841}{318427438204588687600} a^{11} - \frac{26558205028379332689}{79606859551147171900} a^{10} - \frac{164708591392939261689}{1273709752818354750400} a^{9} - \frac{129294636225809430727}{636854876409177375200} a^{8} - \frac{16805826553543882521}{254741950563670950080} a^{7} - \frac{33968443769323040267}{159213719102294343800} a^{6} + \frac{50030499904240433453}{127370975281835475040} a^{5} + \frac{35653145949573577649}{79606859551147171900} a^{4} + \frac{61693838626699825321}{159213719102294343800} a^{3} + \frac{2456297606242613269}{15921371910229434380} a^{2} + \frac{527776524043716461}{31842743820458868760} a + \frac{9442386599474150733}{79606859551147171900}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 194394657.717 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times (C_3\times A_4):S_3$ (as 18T156):
| A solvable group of order 432 |
| The 38 conjugacy class representatives for $C_2\times (C_3\times A_4):S_3$ |
| Character table for $C_2\times (C_3\times A_4):S_3$ is not computed |
Intermediate fields
| 3.3.32009.3, 6.4.4098304324.1, 9.9.32795655776729.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 32009 | Data not computed | ||||||