Normalized defining polynomial
\( x^{18} - 25 x^{16} + 130 x^{14} + 777 x^{12} - 7318 x^{10} + 10121 x^{8} + 22657 x^{6} - 30310 x^{4} - 29600 x^{2} + 3700 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-66051619098618034936222842880000=-\,2^{26}\cdot 5^{4}\cdot 37^{9}\cdot 59^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{26} a^{12} + \frac{2}{13} a^{10} + \frac{3}{26} a^{8} + \frac{3}{13} a^{6} - \frac{7}{26} a^{4} - \frac{6}{13} a^{2} - \frac{3}{13}$, $\frac{1}{26} a^{13} + \frac{2}{13} a^{11} + \frac{3}{26} a^{9} + \frac{3}{13} a^{7} - \frac{7}{26} a^{5} - \frac{6}{13} a^{3} - \frac{3}{13} a$, $\frac{1}{26} a^{14} + \frac{7}{26} a^{8} - \frac{1}{2} a^{7} + \frac{4}{13} a^{6} - \frac{1}{2} a^{5} - \frac{5}{13} a^{4} - \frac{1}{2} a^{3} - \frac{5}{13} a^{2} - \frac{1}{13}$, $\frac{1}{130} a^{15} + \frac{7}{130} a^{9} - \frac{1}{2} a^{8} - \frac{9}{65} a^{7} - \frac{1}{2} a^{6} + \frac{8}{65} a^{5} - \frac{1}{2} a^{4} + \frac{21}{65} a^{3} + \frac{5}{13} a$, $\frac{1}{41334332313034930} a^{16} - \frac{149968954427495}{8266866462606986} a^{14} - \frac{30385570864429}{4133433231303493} a^{12} + \frac{1429331026085397}{41334332313034930} a^{10} + \frac{9332672994994211}{20667166156517465} a^{8} - \frac{652540213037963}{3179564024079610} a^{6} - \frac{4034997842945103}{41334332313034930} a^{4} - \frac{539899898465975}{4133433231303493} a^{2} - \frac{433224472235502}{4133433231303493}$, $\frac{1}{41334332313034930} a^{17} - \frac{113931967321553}{41334332313034930} a^{15} - \frac{30385570864429}{4133433231303493} a^{13} + \frac{1429331026085397}{41334332313034930} a^{11} + \frac{2449569467182411}{41334332313034930} a^{9} - \frac{1}{2} a^{8} - \frac{3985890651236023}{8266866462606986} a^{7} - \frac{1}{2} a^{6} + \frac{6139607034109649}{41334332313034930} a^{5} - \frac{1}{2} a^{4} + \frac{642172661091509}{41334332313034930} a^{3} - \frac{1387093679459385}{4133433231303493} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13392692296.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 144 conjugacy class representatives for t18n772 are not computed |
| Character table for t18n772 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.10438327105600.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | $18$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.10.2 | $x^{6} + 2 x^{5} + 2 x^{4} + 2 x^{2} + 2$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ |
| 2.12.16.15 | $x^{12} - 71 x^{8} + 123 x^{4} - 245$ | $6$ | $2$ | $16$ | 12T50 | $[4/3, 4/3, 2, 2]_{3}^{2}$ | |
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.12.0.1 | $x^{12} - x^{3} - 2 x + 3$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 37 | Data not computed | ||||||
| $59$ | 59.6.4.1 | $x^{6} + 295 x^{3} + 27848$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 59.12.0.1 | $x^{12} - x + 10$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |