Normalized defining polynomial
\( x^{18} - 18 x^{16} - 102 x^{14} + 3193 x^{12} - 6825 x^{10} - 132027 x^{8} + 642425 x^{6} + 294000 x^{4} - 5267451 x^{2} + 5564881 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-640013949632619052551483742699720704=-\,2^{12}\cdot 3^{24}\cdot 7^{14}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} + \frac{2}{7} a^{8} + \frac{1}{7} a^{6}$, $\frac{1}{7} a^{11} + \frac{2}{7} a^{9} + \frac{1}{7} a^{7}$, $\frac{1}{14} a^{12} - \frac{1}{14} a^{10} - \frac{5}{14} a^{8} - \frac{3}{14} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{14} a^{13} - \frac{1}{14} a^{11} - \frac{5}{14} a^{9} - \frac{3}{14} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{14} a^{14} + \frac{2}{7} a^{8} - \frac{2}{7} a^{6} - \frac{1}{2}$, $\frac{1}{28} a^{15} - \frac{1}{28} a^{14} - \frac{1}{28} a^{13} - \frac{1}{28} a^{11} - \frac{1}{14} a^{10} - \frac{9}{28} a^{9} + \frac{3}{14} a^{8} + \frac{11}{28} a^{7} + \frac{1}{14} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4}$, $\frac{1}{639551092746291568892} a^{16} - \frac{1060005088254706658}{159887773186572892223} a^{14} - \frac{1}{28} a^{13} - \frac{1487756480015501245}{639551092746291568892} a^{12} + \frac{1}{28} a^{11} - \frac{21250737992202737815}{639551092746291568892} a^{10} + \frac{5}{28} a^{9} + \frac{25379496895540354195}{91364441820898795556} a^{8} - \frac{11}{28} a^{7} - \frac{17841940207259771595}{91364441820898795556} a^{6} - \frac{1}{4} a^{5} - \frac{21986285590548288591}{91364441820898795556} a^{4} + \frac{1}{4} a^{3} - \frac{557381735156045263}{3263015779317814127} a^{2} - \frac{1}{4} a + \frac{1498020335213454451}{13052063117271256508}$, $\frac{1}{215528718255500258716604} a^{17} - \frac{1443229979032174856639}{215528718255500258716604} a^{15} - \frac{1045352742446533849483}{53882179563875064679151} a^{13} - \frac{1}{28} a^{12} - \frac{4521744683902979399485}{107764359127750129358302} a^{11} + \frac{1}{28} a^{10} + \frac{7591043895913393487055}{15394908446821447051186} a^{9} + \frac{5}{28} a^{8} + \frac{1285246501723551090798}{7697454223410723525593} a^{7} - \frac{11}{28} a^{6} - \frac{7582821258702261825999}{15394908446821447051186} a^{5} - \frac{1}{4} a^{4} + \frac{85871899100956800377}{4398545270520413443196} a^{3} + \frac{1}{4} a^{2} - \frac{1375494638536904107143}{4398545270520413443196} a - \frac{1}{4}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 595238841562 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 13824 |
| The 96 conjugacy class representatives for t18n585 are not computed |
| Character table for t18n585 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.1785733746591249.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $13$ | 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |