Normalized defining polynomial
\( x^{18} - 6 x^{17} - 51 x^{16} + 254 x^{15} + 972 x^{14} - 2700 x^{13} - 9201 x^{12} + 4554 x^{11} + 26824 x^{10} + 36468 x^{9} + 1365 x^{8} - 107848 x^{7} - 42441 x^{6} + 89742 x^{5} - 3586 x^{4} - 30696 x^{3} + 25776 x^{2} + 6872 x - 3683 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6061731293901735349533566719229952=-\,2^{18}\cdot 3^{6}\cdot 7^{13}\cdot 41^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{12} + \frac{1}{6} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{2} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{12} a^{15} - \frac{1}{12} a^{14} + \frac{1}{12} a^{13} + \frac{1}{12} a^{12} + \frac{1}{4} a^{11} + \frac{1}{4} a^{10} + \frac{1}{6} a^{8} - \frac{1}{12} a^{7} + \frac{5}{12} a^{6} - \frac{1}{12} a^{5} - \frac{1}{4} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{5}{12} a + \frac{1}{12}$, $\frac{1}{24} a^{16} - \frac{1}{12} a^{14} + \frac{1}{12} a^{13} - \frac{1}{12} a^{12} + \frac{1}{12} a^{11} + \frac{3}{8} a^{10} - \frac{1}{4} a^{9} + \frac{5}{24} a^{8} + \frac{1}{6} a^{7} + \frac{1}{12} a^{6} + \frac{1}{24} a^{4} + \frac{1}{6} a^{3} - \frac{3}{8} a^{2} - \frac{1}{12} a + \frac{1}{8}$, $\frac{1}{14150719720912987403068381663840189701246744} a^{17} - \frac{8257821240424272956226687810379554275527}{1768839965114123425383547707980023712655843} a^{16} + \frac{98257942808726660823249419171420266468123}{7075359860456493701534190831920094850623372} a^{15} + \frac{162717112570173010501101771130641359217455}{7075359860456493701534190831920094850623372} a^{14} + \frac{1168519608770179961970782813311440683237683}{7075359860456493701534190831920094850623372} a^{13} - \frac{807971554787360985032721672673011083470621}{7075359860456493701534190831920094850623372} a^{12} + \frac{6867367783876425374049194675211105555962713}{14150719720912987403068381663840189701246744} a^{11} + \frac{1895841744120264589183238584288726299610559}{7075359860456493701534190831920094850623372} a^{10} + \frac{29404266467811778302313653062485645882031}{115046501796040547992425867185692599197128} a^{9} + \frac{1132423571773350844990373220187118053019587}{3537679930228246850767095415960047425311686} a^{8} - \frac{565673188723471031058639736210765157435165}{2358453286818831233844730277306698283541124} a^{7} - \frac{149925766078863269899976277601475295594351}{1179226643409415616922365138653349141770562} a^{6} + \frac{3984646682262667769744606351989922642589577}{14150719720912987403068381663840189701246744} a^{5} + \frac{851784136686164494734731727481987618536841}{1768839965114123425383547707980023712655843} a^{4} - \frac{3992068147851689954379352730894867512164169}{14150719720912987403068381663840189701246744} a^{3} + \frac{601021546342318213449314297854688553823233}{2358453286818831233844730277306698283541124} a^{2} - \frac{336063043662560945817993447066172768506823}{4716906573637662467689460554613396567082248} a + \frac{124999981602449099487899659917566634806967}{1179226643409415616922365138653349141770562}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59572327682.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n657 are not computed |
| Character table for t18n657 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.574470067776192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| 41 | Data not computed | ||||||