Properties

Label 18.12.5698622615...6707.1
Degree $18$
Signature $[12, 3]$
Discriminant $-\,3^{27}\cdot 73^{3}\cdot 577^{3}$
Root discriminant $30.65$
Ramified primes $3, 73, 577$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T765

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2017, -6129, 1380, 11961, -8790, -8607, 8122, 4545, -3834, -2590, 1545, 861, -353, -177, 12, 43, 0, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 + 43*x^15 + 12*x^14 - 177*x^13 - 353*x^12 + 861*x^11 + 1545*x^10 - 2590*x^9 - 3834*x^8 + 4545*x^7 + 8122*x^6 - 8607*x^5 - 8790*x^4 + 11961*x^3 + 1380*x^2 - 6129*x + 2017)
 
gp: K = bnfinit(x^18 - 6*x^17 + 43*x^15 + 12*x^14 - 177*x^13 - 353*x^12 + 861*x^11 + 1545*x^10 - 2590*x^9 - 3834*x^8 + 4545*x^7 + 8122*x^6 - 8607*x^5 - 8790*x^4 + 11961*x^3 + 1380*x^2 - 6129*x + 2017, 1)
 

Normalized defining polynomial

\( x^{18} - 6 x^{17} + 43 x^{15} + 12 x^{14} - 177 x^{13} - 353 x^{12} + 861 x^{11} + 1545 x^{10} - 2590 x^{9} - 3834 x^{8} + 4545 x^{7} + 8122 x^{6} - 8607 x^{5} - 8790 x^{4} + 11961 x^{3} + 1380 x^{2} - 6129 x + 2017 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-569862261508654647313096707=-\,3^{27}\cdot 73^{3}\cdot 577^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $30.65$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 73, 577$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{336527408248989523095331} a^{17} + \frac{77151197834376162584329}{336527408248989523095331} a^{16} + \frac{160193132122093696185746}{336527408248989523095331} a^{15} + \frac{76344566717044791490402}{336527408248989523095331} a^{14} - \frac{10913752472523094551708}{336527408248989523095331} a^{13} - \frac{148816520594505266838163}{336527408248989523095331} a^{12} - \frac{83400019533313950614443}{336527408248989523095331} a^{11} - \frac{137334879029386298844415}{336527408248989523095331} a^{10} - \frac{121993548100072857916576}{336527408248989523095331} a^{9} - \frac{79304057732082220399672}{336527408248989523095331} a^{8} + \frac{141628553442460346034230}{336527408248989523095331} a^{7} + \frac{47767868066686230665092}{336527408248989523095331} a^{6} - \frac{23487715745889324011108}{336527408248989523095331} a^{5} - \frac{18427267160725234162602}{336527408248989523095331} a^{4} + \frac{140339876260368588293290}{336527408248989523095331} a^{3} - \frac{38509468109979929120047}{336527408248989523095331} a^{2} - \frac{166528890057056540325932}{336527408248989523095331} a - \frac{62011760556888682901057}{336527408248989523095331}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 7664057.26056 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T765:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 82944
The 110 conjugacy class representatives for t18n765 are not computed
Character table for t18n765 is not computed

Intermediate fields

\(\Q(\zeta_{9})^+\), 9.9.22384826361.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $18$ R $18$ ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ $18$ $18$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
73Data not computed
577Data not computed