Properties

Label 18.12.5511264841...4288.1
Degree $18$
Signature $[12, 3]$
Discriminant $-\,2^{12}\cdot 3^{6}\cdot 7^{12}\cdot 41^{8}\cdot 167$
Root discriminant $58.00$
Ramified primes $2, 3, 7, 41, 167$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T657

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![167, 0, -32400, 0, 194262, 0, -119593, 0, 8103, 0, 7503, 0, -1017, 0, -132, 0, 15, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 15*x^16 - 132*x^14 - 1017*x^12 + 7503*x^10 + 8103*x^8 - 119593*x^6 + 194262*x^4 - 32400*x^2 + 167)
 
gp: K = bnfinit(x^18 + 15*x^16 - 132*x^14 - 1017*x^12 + 7503*x^10 + 8103*x^8 - 119593*x^6 + 194262*x^4 - 32400*x^2 + 167, 1)
 

Normalized defining polynomial

\( x^{18} + 15 x^{16} - 132 x^{14} - 1017 x^{12} + 7503 x^{10} + 8103 x^{8} - 119593 x^{6} + 194262 x^{4} - 32400 x^{2} + 167 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-55112648414720699225397737484288=-\,2^{12}\cdot 3^{6}\cdot 7^{12}\cdot 41^{8}\cdot 167\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $58.00$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 41, 167$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{12} a^{12} - \frac{1}{4} a^{10} - \frac{5}{12} a^{8} - \frac{5}{12} a^{6} - \frac{1}{2} a^{5} - \frac{5}{12} a^{4} + \frac{5}{12} a^{2} + \frac{1}{12}$, $\frac{1}{12} a^{13} - \frac{1}{4} a^{11} + \frac{1}{12} a^{9} - \frac{1}{2} a^{8} - \frac{5}{12} a^{7} + \frac{1}{12} a^{5} - \frac{1}{2} a^{4} - \frac{1}{12} a^{3} + \frac{1}{12} a - \frac{1}{2}$, $\frac{1}{12} a^{14} - \frac{1}{6} a^{10} + \frac{1}{3} a^{8} - \frac{1}{2} a^{7} + \frac{1}{3} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{2} + \frac{1}{4}$, $\frac{1}{12} a^{15} - \frac{1}{6} a^{11} - \frac{1}{6} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{65167154914598196} a^{16} + \frac{437445976708933}{21722384971532732} a^{14} + \frac{671985293513056}{16291788728649549} a^{12} + \frac{367270451931430}{16291788728649549} a^{10} + \frac{4384985022706330}{16291788728649549} a^{8} + \frac{9237233601211003}{32583577457299098} a^{6} + \frac{10648447255530281}{32583577457299098} a^{4} - \frac{1}{2} a^{3} + \frac{1738948595591667}{21722384971532732} a^{2} - \frac{4929038613289757}{21722384971532732}$, $\frac{1}{65167154914598196} a^{17} + \frac{437445976708933}{21722384971532732} a^{15} + \frac{671985293513056}{16291788728649549} a^{13} + \frac{367270451931430}{16291788728649549} a^{11} - \frac{7521818683236889}{32583577457299098} a^{9} - \frac{1}{2} a^{8} + \frac{9237233601211003}{32583577457299098} a^{7} - \frac{1}{2} a^{6} - \frac{2821670736559634}{16291788728649549} a^{5} - \frac{9122243890174699}{21722384971532732} a^{3} - \frac{4929038613289757}{21722384971532732} a - \frac{1}{2}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 6216018685.18 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T657:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 27648
The 96 conjugacy class representatives for t18n657 are not computed
Character table for t18n657 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 9.9.574470067776192.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ R ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.12.12.26$x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$$2$$6$$12$$C_6\times C_2$$[2]^{6}$
$3$3.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
3.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
3.6.3.1$x^{6} - 6 x^{4} + 9 x^{2} - 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.1$x^{6} - 6 x^{4} + 9 x^{2} - 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$7$7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
41Data not computed
167Data not computed