Normalized defining polynomial
\( x^{18} - 7 x^{16} - 15 x^{15} - 188 x^{14} - 1277 x^{13} - 3341 x^{12} + 15250 x^{11} + 85568 x^{10} + 144577 x^{9} - 22645 x^{8} - 636218 x^{7} - 453143 x^{6} + 716395 x^{5} + 616323 x^{4} - 171844 x^{3} - 222992 x^{2} - 49210 x - 3031 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-518986303303243273250774395826207=-\,7^{14}\cdot 83^{5}\cdot 181^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 83, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} + \frac{4}{13} a^{13} - \frac{4}{13} a^{12} + \frac{1}{13} a^{11} - \frac{1}{13} a^{10} - \frac{6}{13} a^{9} - \frac{4}{13} a^{8} - \frac{5}{13} a^{7} - \frac{5}{13} a^{6} - \frac{6}{13} a^{5} - \frac{4}{13} a^{3} - \frac{4}{13} a^{2} - \frac{4}{13} a + \frac{5}{13}$, $\frac{1}{13} a^{15} + \frac{6}{13} a^{13} + \frac{4}{13} a^{12} - \frac{5}{13} a^{11} - \frac{2}{13} a^{10} - \frac{6}{13} a^{9} - \frac{2}{13} a^{8} + \frac{2}{13} a^{7} + \frac{1}{13} a^{6} - \frac{2}{13} a^{5} - \frac{4}{13} a^{4} - \frac{1}{13} a^{3} - \frac{1}{13} a^{2} - \frac{5}{13} a + \frac{6}{13}$, $\frac{1}{13} a^{16} + \frac{6}{13} a^{13} + \frac{6}{13} a^{12} + \frac{5}{13} a^{11} - \frac{5}{13} a^{9} + \frac{5}{13} a^{7} + \frac{2}{13} a^{6} + \frac{6}{13} a^{5} - \frac{1}{13} a^{4} - \frac{3}{13} a^{3} + \frac{6}{13} a^{2} + \frac{4}{13} a - \frac{4}{13}$, $\frac{1}{183548506573190062581664007260735744599582973816397} a^{17} + \frac{5508055883180753590022509774569950835943136265851}{183548506573190062581664007260735744599582973816397} a^{16} + \frac{2239091054442219883809859959012686767206489875206}{183548506573190062581664007260735744599582973816397} a^{15} + \frac{513656638514146700135060494874846291251923651281}{14119115890245389429358769789287364969198690293569} a^{14} - \frac{43366207358667537608853349759955162536757278387879}{183548506573190062581664007260735744599582973816397} a^{13} - \frac{49048083779745640324460156589251891427504445391863}{183548506573190062581664007260735744599582973816397} a^{12} + \frac{23220972388383894588085815455957018114264871802356}{183548506573190062581664007260735744599582973816397} a^{11} + \frac{43149010476012809228770386009705893174351641659261}{183548506573190062581664007260735744599582973816397} a^{10} + \frac{12057352590741661730248333716987803183986407861937}{183548506573190062581664007260735744599582973816397} a^{9} - \frac{46169577321072367542108782279933069357682901394171}{183548506573190062581664007260735744599582973816397} a^{8} - \frac{1835684917721619751637112818243909143822789317561}{183548506573190062581664007260735744599582973816397} a^{7} - \frac{8664162567401910745179728677912894575091640473043}{183548506573190062581664007260735744599582973816397} a^{6} - \frac{56923944958636775836732238278278774954914740449226}{183548506573190062581664007260735744599582973816397} a^{5} + \frac{72679442667598658478071740995747214919436685831508}{183548506573190062581664007260735744599582973816397} a^{4} - \frac{21103133531418564386393650563472193766269943416403}{183548506573190062581664007260735744599582973816397} a^{3} + \frac{23508885863711078888339745649958754142338911631113}{183548506573190062581664007260735744599582973816397} a^{2} + \frac{62685047963003207790384533125823485561820751407746}{183548506573190062581664007260735744599582973816397} a - \frac{3904050755004052861204096811527796823660469433784}{14119115890245389429358769789287364969198690293569}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16013216431.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 192 conjugacy class representatives for t18n839 are not computed |
| Character table for t18n839 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.26552265046321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | $18$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 83 | Data not computed | ||||||
| $181$ | $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.4.3.4 | $x^{4} + 1448$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 181.4.2.1 | $x^{4} + 6335 x^{2} + 10614564$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |