Normalized defining polynomial
\( x^{18} - 18 x^{16} - 135 x^{15} - 855 x^{14} + 2664 x^{13} + 16536 x^{12} + 35649 x^{11} + 86868 x^{10} - 662256 x^{9} - 1868265 x^{8} + 954900 x^{7} + 9189660 x^{6} + 3497886 x^{5} - 13877136 x^{4} - 8094474 x^{3} + 5595606 x^{2} + 4107591 x + 603649 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-51096294546839412676148707927734375=-\,3^{36}\cdot 5^{9}\cdot 19^{3}\cdot 71^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 19, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{6} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{7} + \frac{1}{3} a$, $\frac{1}{12} a^{14} - \frac{1}{6} a^{13} - \frac{1}{12} a^{12} - \frac{1}{12} a^{11} + \frac{1}{12} a^{10} + \frac{1}{12} a^{9} - \frac{1}{6} a^{8} + \frac{1}{12} a^{7} + \frac{5}{12} a^{6} + \frac{1}{6} a^{5} + \frac{1}{3} a^{4} - \frac{5}{12} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{12} a^{15} - \frac{1}{12} a^{13} + \frac{1}{12} a^{12} - \frac{1}{12} a^{11} - \frac{1}{12} a^{10} + \frac{1}{12} a^{8} + \frac{1}{4} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{12} a^{4} - \frac{1}{12} a^{3} - \frac{5}{12} a^{2} - \frac{5}{12} a - \frac{1}{2}$, $\frac{1}{48} a^{16} - \frac{1}{48} a^{15} - \frac{1}{24} a^{14} - \frac{1}{12} a^{13} - \frac{1}{48} a^{12} - \frac{1}{16} a^{11} - \frac{1}{12} a^{10} - \frac{1}{6} a^{9} - \frac{1}{3} a^{8} - \frac{1}{6} a^{7} - \frac{17}{48} a^{6} - \frac{1}{16} a^{5} + \frac{1}{3} a^{4} + \frac{17}{48} a^{3} - \frac{17}{48} a^{2} - \frac{5}{24} a + \frac{17}{48}$, $\frac{1}{16902745997180959432083948435264614621558983760039514600895248} a^{17} + \frac{158232775486701887150985638619180959850338563687639827055067}{16902745997180959432083948435264614621558983760039514600895248} a^{16} - \frac{69397672549429374907427311571767885436872151196526014513417}{2817124332863493238680658072544102436926497293339919100149208} a^{15} - \frac{108567076653112797890289390071822332490438869768199160948125}{4225686499295239858020987108816153655389745940009878650223812} a^{14} + \frac{1350909201594541979691603041369697375441827539083268613571415}{16902745997180959432083948435264614621558983760039514600895248} a^{13} - \frac{900281456283361520243195684244243543120371638123279727053381}{5634248665726986477361316145088204873852994586679838200298416} a^{12} - \frac{942022131019941106400886768797364163529267042852314572323}{9919451876279905770002317156845431115938370751196898239962} a^{11} + \frac{43439145624601551783487830593019513254366066608362271423147}{2112843249647619929010493554408076827694872970004939325111906} a^{10} + \frac{832285996178392085579177589618826782296360452282973876420215}{2112843249647619929010493554408076827694872970004939325111906} a^{9} + \frac{113485793593547272016289763099941296849178205200583221063973}{1056421624823809964505246777204038413847436485002469662555953} a^{8} + \frac{2371149814565798992186308941142886673820053191773850297188629}{5634248665726986477361316145088204873852994586679838200298416} a^{7} + \frac{1228447110551263316326547678513715249642450425553624462551977}{16902745997180959432083948435264614621558983760039514600895248} a^{6} + \frac{823357549895801766206209568329275492598800633958741721865191}{4225686499295239858020987108816153655389745940009878650223812} a^{5} + \frac{1681086029851165936328618905032970615596354226247255574016035}{5634248665726986477361316145088204873852994586679838200298416} a^{4} - \frac{8086788326186993442610117858447395365668304063240606233223557}{16902745997180959432083948435264614621558983760039514600895248} a^{3} + \frac{611923633023188603758961961313559229310804321209754980783135}{2817124332863493238680658072544102436926497293339919100149208} a^{2} + \frac{14136021182259118028413096764269882063343859679170686242627}{889618210377945233267576233434979716924157040002079715836592} a + \frac{45471772282888118000770262492234841188596695999540436822411}{222404552594486308316894058358744929231039260000519928959148}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104818991244 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 279936 |
| The 159 conjugacy class representatives for t18n857 are not computed |
| Character table for t18n857 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{9})^+\), 6.6.820125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }$ | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | $18$ | $18$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| $71$ | $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.3.2.1 | $x^{3} - 71$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 71.3.2.1 | $x^{3} - 71$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |