Normalized defining polynomial
\( x^{18} - 9 x^{17} + 25 x^{16} + 4 x^{15} - 158 x^{14} + 322 x^{13} - 83 x^{12} - 854 x^{11} + 1654 x^{10} - 537 x^{9} - 2077 x^{8} + 3098 x^{7} - 1044 x^{6} - 1765 x^{5} + 2026 x^{4} - 495 x^{3} - 413 x^{2} + 305 x - 29 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-50153949272342440610831059=-\,19\cdot 1129^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 1129$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{39} a^{12} - \frac{2}{13} a^{11} - \frac{2}{13} a^{10} + \frac{7}{39} a^{9} - \frac{5}{13} a^{8} - \frac{3}{13} a^{7} - \frac{10}{39} a^{6} - \frac{1}{13} a^{5} + \frac{17}{39} a^{4} - \frac{2}{39} a^{3} + \frac{16}{39} a^{2} + \frac{10}{39} a - \frac{1}{39}$, $\frac{1}{39} a^{13} - \frac{1}{13} a^{11} + \frac{10}{39} a^{10} - \frac{4}{13} a^{9} + \frac{6}{13} a^{8} + \frac{14}{39} a^{7} + \frac{5}{13} a^{6} - \frac{1}{39} a^{5} - \frac{17}{39} a^{4} + \frac{4}{39} a^{3} - \frac{11}{39} a^{2} - \frac{19}{39} a - \frac{2}{13}$, $\frac{1}{39} a^{14} - \frac{8}{39} a^{11} + \frac{3}{13} a^{10} + \frac{8}{39} a^{8} - \frac{4}{13} a^{7} + \frac{8}{39} a^{6} + \frac{1}{3} a^{5} + \frac{16}{39} a^{4} - \frac{17}{39} a^{3} - \frac{10}{39} a^{2} - \frac{5}{13} a - \frac{1}{13}$, $\frac{1}{39} a^{15} - \frac{3}{13} a^{10} - \frac{14}{39} a^{9} - \frac{5}{13} a^{8} + \frac{14}{39} a^{7} + \frac{11}{39} a^{6} - \frac{8}{39} a^{5} + \frac{2}{39} a^{4} + \frac{1}{3} a^{3} - \frac{4}{39} a^{2} - \frac{1}{39} a - \frac{8}{39}$, $\frac{1}{72033} a^{16} - \frac{8}{72033} a^{15} + \frac{284}{72033} a^{14} - \frac{1}{72033} a^{13} - \frac{58}{72033} a^{12} + \frac{18467}{72033} a^{11} + \frac{10201}{24011} a^{10} + \frac{4724}{24011} a^{9} + \frac{5233}{24011} a^{8} - \frac{193}{72033} a^{7} + \frac{15143}{72033} a^{6} - \frac{8634}{24011} a^{5} - \frac{26848}{72033} a^{4} + \frac{7479}{24011} a^{3} + \frac{5622}{24011} a^{2} - \frac{3492}{24011} a + \frac{7817}{72033}$, $\frac{1}{46173153} a^{17} + \frac{8}{1183927} a^{16} + \frac{452086}{46173153} a^{15} + \frac{233098}{46173153} a^{14} - \frac{11660}{1183927} a^{13} + \frac{37217}{3551781} a^{12} + \frac{22422671}{46173153} a^{11} + \frac{1026786}{15391051} a^{10} - \frac{18254170}{46173153} a^{9} - \frac{964487}{46173153} a^{8} - \frac{7558687}{15391051} a^{7} - \frac{10135301}{46173153} a^{6} - \frac{3123375}{15391051} a^{5} - \frac{170510}{1183927} a^{4} - \frac{2865048}{15391051} a^{3} + \frac{16256239}{46173153} a^{2} - \frac{6146402}{46173153} a - \frac{15813412}{46173153}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2961610.51372 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 9216 |
| The 88 conjugacy class representatives for t18n548 are not computed |
| Character table for t18n548 is not computed |
Intermediate fields
| 3.3.1129.1, 9.9.1624709678881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 1129 | Data not computed | ||||||