Properties

Label 18.12.5005661731...7911.1
Degree $18$
Signature $[12, 3]$
Discriminant $-\,7^{12}\cdot 71\cdot 83^{4}\cdot 181^{4}$
Root discriminant $39.30$
Ramified primes $7, 71, 83, 181$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T839

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7, -133, 539, -97, -3082, 4693, 1271, -6255, 3235, -118, -1164, 1404, -431, 180, -46, -3, 13, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 7*x^17 + 13*x^16 - 3*x^15 - 46*x^14 + 180*x^13 - 431*x^12 + 1404*x^11 - 1164*x^10 - 118*x^9 + 3235*x^8 - 6255*x^7 + 1271*x^6 + 4693*x^5 - 3082*x^4 - 97*x^3 + 539*x^2 - 133*x + 7)
 
gp: K = bnfinit(x^18 - 7*x^17 + 13*x^16 - 3*x^15 - 46*x^14 + 180*x^13 - 431*x^12 + 1404*x^11 - 1164*x^10 - 118*x^9 + 3235*x^8 - 6255*x^7 + 1271*x^6 + 4693*x^5 - 3082*x^4 - 97*x^3 + 539*x^2 - 133*x + 7, 1)
 

Normalized defining polynomial

\( x^{18} - 7 x^{17} + 13 x^{16} - 3 x^{15} - 46 x^{14} + 180 x^{13} - 431 x^{12} + 1404 x^{11} - 1164 x^{10} - 118 x^{9} + 3235 x^{8} - 6255 x^{7} + 1271 x^{6} + 4693 x^{5} - 3082 x^{4} - 97 x^{3} + 539 x^{2} - 133 x + 7 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-50056617315395675475570087911=-\,7^{12}\cdot 71\cdot 83^{4}\cdot 181^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $39.30$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 71, 83, 181$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3480144525887016717339709987} a^{17} + \frac{185367277787788314488130740}{3480144525887016717339709987} a^{16} + \frac{1032425880648074053551232403}{3480144525887016717339709987} a^{15} - \frac{392787007157441086217266685}{3480144525887016717339709987} a^{14} + \frac{2185949043412635576481591}{3480144525887016717339709987} a^{13} + \frac{638192920889794579055922499}{3480144525887016717339709987} a^{12} + \frac{756810921525904163341443359}{3480144525887016717339709987} a^{11} + \frac{738565283293081621358060793}{3480144525887016717339709987} a^{10} + \frac{855679297690845614370389482}{3480144525887016717339709987} a^{9} - \frac{358885267419517760382007072}{3480144525887016717339709987} a^{8} + \frac{259117089832857587129423734}{3480144525887016717339709987} a^{7} - \frac{1067618930640993927145202785}{3480144525887016717339709987} a^{6} - \frac{564228869999766380344738429}{3480144525887016717339709987} a^{5} + \frac{1200801289880579666164853828}{3480144525887016717339709987} a^{4} + \frac{376221447049754358848676311}{3480144525887016717339709987} a^{3} - \frac{1736670609546888070158395324}{3480144525887016717339709987} a^{2} + \frac{1465351155046445487254656782}{3480144525887016717339709987} a - \frac{1115538608164808134229234794}{3480144525887016717339709987}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 134024216.798 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T839:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 165888
The 192 conjugacy class representatives for t18n839 are not computed
Character table for t18n839 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 9.9.26552265046321.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ R $18$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ $18$ ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ $18$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$7$7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
71Data not computed
$83$$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
83.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
83.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
83.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
83.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
83.3.2.1$x^{3} - 83$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
83.3.2.1$x^{3} - 83$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
$181$$\Q_{181}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{181}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{181}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{181}$$x + 2$$1$$1$$0$Trivial$[\ ]$
181.2.0.1$x^{2} - x + 18$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} - x + 18$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} - x + 18$$1$$2$$0$$C_2$$[\ ]^{2}$
181.4.2.1$x^{4} + 6335 x^{2} + 10614564$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
181.4.2.1$x^{4} + 6335 x^{2} + 10614564$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$