Normalized defining polynomial
\( x^{18} - 6 x^{17} - 132 x^{16} + 548 x^{15} + 8312 x^{14} - 15681 x^{13} - 302453 x^{12} - 72891 x^{11} + 6132831 x^{10} + 13144625 x^{9} - 52777043 x^{8} - 252477790 x^{7} - 152131512 x^{6} + 1244201712 x^{5} + 3892288402 x^{4} + 5616772596 x^{3} + 4623947060 x^{2} + 2061278913 x + 329341949 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-48801053907192911222729739691193359375=-\,5^{9}\cdot 7^{12}\cdot 41^{2}\cdot 251\cdot 65409469^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $124.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 41, 251, 65409469$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{41} a^{15} + \frac{8}{41} a^{14} - \frac{14}{41} a^{13} - \frac{4}{41} a^{12} + \frac{20}{41} a^{11} - \frac{11}{41} a^{10} - \frac{13}{41} a^{9} + \frac{2}{41} a^{8} + \frac{17}{41} a^{7} - \frac{8}{41} a^{6} + \frac{4}{41} a^{5} - \frac{8}{41} a^{4} - \frac{15}{41} a^{2} + \frac{7}{41} a - \frac{10}{41}$, $\frac{1}{41} a^{16} + \frac{4}{41} a^{14} - \frac{15}{41} a^{13} + \frac{11}{41} a^{12} - \frac{7}{41} a^{11} - \frac{7}{41} a^{10} - \frac{17}{41} a^{9} + \frac{1}{41} a^{8} + \frac{20}{41} a^{7} - \frac{14}{41} a^{6} + \frac{1}{41} a^{5} - \frac{18}{41} a^{4} - \frac{15}{41} a^{3} + \frac{4}{41} a^{2} + \frac{16}{41} a - \frac{2}{41}$, $\frac{1}{773556814131221769750562773183300090688071656729413} a^{17} - \frac{8627141456087608574552391375744193554098664833491}{773556814131221769750562773183300090688071656729413} a^{16} + \frac{9407082054163486838752797562359123359758486758276}{773556814131221769750562773183300090688071656729413} a^{15} + \frac{166536557250950230518438671618601413464733185325051}{773556814131221769750562773183300090688071656729413} a^{14} + \frac{24220280381502052162253017883976969471445598604863}{773556814131221769750562773183300090688071656729413} a^{13} - \frac{17674794196034465134966513435895525671540366474682}{773556814131221769750562773183300090688071656729413} a^{12} + \frac{6828108409930965962686292433279636071969695097084}{18867239369054189506111287150812197333855406261693} a^{11} + \frac{162166565092193558245566448356407270102717560896972}{773556814131221769750562773183300090688071656729413} a^{10} + \frac{186400108274165331981480447276825426823948855492421}{773556814131221769750562773183300090688071656729413} a^{9} + \frac{323054029566668221162311958762061692570770825516489}{773556814131221769750562773183300090688071656729413} a^{8} - \frac{181970188041988511098711490171315401043776252541621}{773556814131221769750562773183300090688071656729413} a^{7} + \frac{119668411092086636888403808781863642553413621719133}{773556814131221769750562773183300090688071656729413} a^{6} - \frac{262102164377454241514206741736159684837456237605357}{773556814131221769750562773183300090688071656729413} a^{5} + \frac{214127957916014167378290991365845427455251879851631}{773556814131221769750562773183300090688071656729413} a^{4} + \frac{324074987558868833391369010482636758162390967692601}{773556814131221769750562773183300090688071656729413} a^{3} + \frac{62847756787136413974866022302510343037628385622803}{773556814131221769750562773183300090688071656729413} a^{2} + \frac{294090156420707500744314939342269467266343185329720}{773556814131221769750562773183300090688071656729413} a + \frac{67875451595566220941000697139515408314817246854108}{773556814131221769750562773183300090688071656729413}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1102666415190 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 279936 |
| The 159 conjugacy class representatives for t18n857 are not computed |
| Character table for t18n857 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }$ | $18$ | R | R | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $18$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 7 | Data not computed | ||||||
| $41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.3.2.1 | $x^{3} - 41$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 251 | Data not computed | ||||||
| 65409469 | Data not computed | ||||||