\\ Pari/GP code for working with number field 18.12.476906177784477015363762146875.1. \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^18 - 4*y^17 - 31*y^16 + 185*y^15 + y^14 - 1613*y^13 + 1684*y^12 + 6399*y^11 - 10342*y^10 - 11977*y^9 + 28278*y^8 + 5087*y^7 - 35988*y^6 + 11990*y^5 + 16625*y^4 - 11352*y^3 - 303*y^2 + 1678*y - 317, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: \\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 4*x^17 - 31*x^16 + 185*x^15 + x^14 - 1613*x^13 + 1684*x^12 + 6399*x^11 - 10342*x^10 - 11977*x^9 + 28278*x^8 + 5087*x^7 - 35988*x^6 + 11990*x^5 + 16625*x^4 - 11352*x^3 - 303*x^2 + 1678*x - 317, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(L)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])