Normalized defining polynomial
\( x^{18} - 4 x^{17} - 31 x^{16} + 185 x^{15} + x^{14} - 1613 x^{13} + 1684 x^{12} + 6399 x^{11} - 10342 x^{10} - 11977 x^{9} + 28278 x^{8} + 5087 x^{7} - 35988 x^{6} + 11990 x^{5} + 16625 x^{4} - 11352 x^{3} - 303 x^{2} + 1678 x - 317 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-476906177784477015363762146875=-\,5^{5}\cdot 13^{16}\cdot 47^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} + \frac{4}{13} a^{13} + \frac{3}{13} a^{12} + \frac{2}{13} a^{11} + \frac{5}{13} a^{10} - \frac{3}{13} a^{9} - \frac{4}{13} a^{8} + \frac{2}{13} a^{7} - \frac{6}{13} a^{6} + \frac{2}{13} a^{5} + \frac{5}{13} a^{4} + \frac{6}{13} a^{3} + \frac{6}{13} a^{2} - \frac{3}{13} a - \frac{6}{13}$, $\frac{1}{13} a^{15} + \frac{3}{13} a^{12} - \frac{3}{13} a^{11} + \frac{3}{13} a^{10} - \frac{5}{13} a^{9} + \frac{5}{13} a^{8} - \frac{1}{13} a^{7} - \frac{3}{13} a^{5} - \frac{1}{13} a^{4} - \frac{5}{13} a^{3} - \frac{1}{13} a^{2} + \frac{6}{13} a - \frac{2}{13}$, $\frac{1}{13} a^{16} + \frac{3}{13} a^{13} - \frac{3}{13} a^{12} + \frac{3}{13} a^{11} - \frac{5}{13} a^{10} + \frac{5}{13} a^{9} - \frac{1}{13} a^{8} - \frac{3}{13} a^{6} - \frac{1}{13} a^{5} - \frac{5}{13} a^{4} - \frac{1}{13} a^{3} + \frac{6}{13} a^{2} - \frac{2}{13} a$, $\frac{1}{19945048148950008169170839} a^{17} + \frac{702609500618308435805896}{19945048148950008169170839} a^{16} - \frac{753927778290162393717284}{19945048148950008169170839} a^{15} + \frac{80756991817750078115642}{19945048148950008169170839} a^{14} - \frac{2441678677124795305634557}{19945048148950008169170839} a^{13} - \frac{526631623521450843092139}{19945048148950008169170839} a^{12} + \frac{8924666121698981888004746}{19945048148950008169170839} a^{11} + \frac{4866371711987429972570088}{19945048148950008169170839} a^{10} - \frac{1297456952785008993721221}{19945048148950008169170839} a^{9} + \frac{145653276410816784232296}{19945048148950008169170839} a^{8} - \frac{4755579755168705797250819}{19945048148950008169170839} a^{7} + \frac{6369152801096826452632212}{19945048148950008169170839} a^{6} - \frac{6907582955810880545672570}{19945048148950008169170839} a^{5} - \frac{4088156561649896218195597}{19945048148950008169170839} a^{4} + \frac{8435942041159521229692217}{19945048148950008169170839} a^{3} + \frac{2796399944314146525309509}{19945048148950008169170839} a^{2} - \frac{9378509484111694860549108}{19945048148950008169170839} a + \frac{1710707271016520315538561}{19945048148950008169170839}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 567194648.955 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2592 |
| The 56 conjugacy class representatives for t18n400 are not computed |
| Character table for t18n400 is not computed |
Intermediate fields
| 3.3.169.1, 6.4.6711835.3, 9.9.45048729067225.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | $18$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | $18$ | R | $18$ | $18$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| $13$ | 13.9.8.2 | $x^{9} - 13$ | $9$ | $1$ | $8$ | $C_9:C_3$ | $[\ ]_{9}^{3}$ |
| 13.9.8.2 | $x^{9} - 13$ | $9$ | $1$ | $8$ | $C_9:C_3$ | $[\ ]_{9}^{3}$ | |
| 47 | Data not computed | ||||||