Normalized defining polynomial
\( x^{18} - 3 x^{17} - 233 x^{16} + 857 x^{15} + 22264 x^{14} - 95339 x^{13} - 1123935 x^{12} + 5480324 x^{11} + 32117323 x^{10} - 178749505 x^{9} - 514147324 x^{8} + 3380634011 x^{7} + 4197277102 x^{6} - 36042457633 x^{5} - 13016923698 x^{4} + 198118012009 x^{3} + 5836768917 x^{2} - 436493676409 x - 141347172337 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-452133353535905818128970950058166588468589916171=-\,7^{12}\cdot 14731^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $444.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 14731$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{6} + \frac{1}{6} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{7} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a$, $\frac{1}{6} a^{13} - \frac{1}{2} a^{8} + \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{3} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{14} - \frac{1}{12} a^{13} - \frac{1}{12} a^{11} - \frac{1}{12} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{12} a^{3} + \frac{1}{3} a^{2} + \frac{1}{6} a - \frac{5}{12}$, $\frac{1}{2120616} a^{15} + \frac{2042}{265077} a^{14} + \frac{9971}{706872} a^{13} + \frac{173461}{2120616} a^{12} - \frac{14389}{706872} a^{11} - \frac{113137}{2120616} a^{10} + \frac{24149}{235624} a^{9} - \frac{380515}{1060308} a^{8} + \frac{300875}{1060308} a^{7} - \frac{320641}{1060308} a^{6} - \frac{218923}{530154} a^{5} + \frac{221275}{706872} a^{4} - \frac{146729}{2120616} a^{3} - \frac{325655}{1060308} a^{2} + \frac{255665}{706872} a - \frac{713651}{2120616}$, $\frac{1}{2120616} a^{16} + \frac{9197}{2120616} a^{14} - \frac{36755}{2120616} a^{13} + \frac{147785}{2120616} a^{12} - \frac{41845}{2120616} a^{11} - \frac{46907}{2120616} a^{10} - \frac{136057}{1060308} a^{9} - \frac{122869}{353436} a^{8} - \frac{1157}{353436} a^{7} - \frac{47818}{265077} a^{6} + \frac{292801}{2120616} a^{5} + \frac{84859}{2120616} a^{4} + \frac{185495}{1060308} a^{3} - \frac{1037369}{2120616} a^{2} - \frac{330899}{2120616} a + \frac{29069}{530154}$, $\frac{1}{6514578863838813666628622722524557848942045607059176300840571368} a^{17} - \frac{631244337741501438406333479911161517255511420379032140767}{6514578863838813666628622722524557848942045607059176300840571368} a^{16} - \frac{185752185074720480084065476505879179014098111358945186563}{1085763143973135611104770453754092974823674267843196050140095228} a^{15} + \frac{8783059773066350187573685850799540093727607283829907027996233}{1085763143973135611104770453754092974823674267843196050140095228} a^{14} - \frac{3039561055536844984804260815252127013719162527421794060267825}{6514578863838813666628622722524557848942045607059176300840571368} a^{13} + \frac{455656627343514710329339255727192438624768729113519382001704113}{6514578863838813666628622722524557848942045607059176300840571368} a^{12} + \frac{402987188980246100999933739070854002265335632315693279959502601}{6514578863838813666628622722524557848942045607059176300840571368} a^{11} - \frac{131691808661437840033663692343098741865420164568715677270460579}{3257289431919406833314311361262278924471022803529588150420285684} a^{10} + \frac{345836620032453323042927812689899030341995382346139745025408177}{6514578863838813666628622722524557848942045607059176300840571368} a^{9} - \frac{1179936840216237542188848121521544887359174596644212766955117411}{3257289431919406833314311361262278924471022803529588150420285684} a^{8} - \frac{31375350075583458603182399984042921310050699966713678954104181}{1628644715959703416657155680631139462235511401764794075210142842} a^{7} + \frac{587985128739695509714862762925896098738977118579695270727451551}{6514578863838813666628622722524557848942045607059176300840571368} a^{6} + \frac{781008515514755433486782751238905128780384667320481699053053559}{1628644715959703416657155680631139462235511401764794075210142842} a^{5} - \frac{454263325462512831598501465467905376442170223274470309225372237}{1085763143973135611104770453754092974823674267843196050140095228} a^{4} - \frac{381711405281078021450412100815003353245520918832888990906970786}{814322357979851708328577840315569731117755700882397037605071421} a^{3} + \frac{1537654211976537394175344158612023331955900033694607328957506343}{3257289431919406833314311361262278924471022803529588150420285684} a^{2} - \frac{620734424706820100496695143310368641556577965269327895619025545}{1628644715959703416657155680631139462235511401764794075210142842} a + \frac{587935410483793640381958086437965379714403914925727943601843345}{6514578863838813666628622722524557848942045607059176300840571368}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 808862563918000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2160 |
| The 33 conjugacy class representatives for t18n362 |
| Character table for t18n362 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.4.3196661779891.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | $15{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | $15{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | $15{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | $15{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | $15{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 14731 | Data not computed | ||||||