Properties

Label 18.12.4294567334...6367.1
Degree $18$
Signature $[12, 3]$
Discriminant $-\,7^{15}\cdot 67^{6}$
Root discriminant $20.56$
Ramified primes $7, 67$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_6\times S_4$ (as 18T61)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -13, -45, -27, 108, 174, 105, 146, 112, -164, -240, 32, 146, -42, -35, 34, -7, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^17 - 7*x^16 + 34*x^15 - 35*x^14 - 42*x^13 + 146*x^12 + 32*x^11 - 240*x^10 - 164*x^9 + 112*x^8 + 146*x^7 + 105*x^6 + 174*x^5 + 108*x^4 - 27*x^3 - 45*x^2 - 13*x - 1)
 
gp: K = bnfinit(x^18 - 3*x^17 - 7*x^16 + 34*x^15 - 35*x^14 - 42*x^13 + 146*x^12 + 32*x^11 - 240*x^10 - 164*x^9 + 112*x^8 + 146*x^7 + 105*x^6 + 174*x^5 + 108*x^4 - 27*x^3 - 45*x^2 - 13*x - 1, 1)
 

Normalized defining polynomial

\( x^{18} - 3 x^{17} - 7 x^{16} + 34 x^{15} - 35 x^{14} - 42 x^{13} + 146 x^{12} + 32 x^{11} - 240 x^{10} - 164 x^{9} + 112 x^{8} + 146 x^{7} + 105 x^{6} + 174 x^{5} + 108 x^{4} - 27 x^{3} - 45 x^{2} - 13 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-429456733437258587406367=-\,7^{15}\cdot 67^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $20.56$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 67$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{14} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{18431369558913} a^{17} - \frac{2005573579115}{18431369558913} a^{16} - \frac{563648363648}{18431369558913} a^{15} - \frac{2909853200237}{18431369558913} a^{14} - \frac{4326456598316}{18431369558913} a^{13} + \frac{579018691058}{18431369558913} a^{12} + \frac{823301622646}{18431369558913} a^{11} + \frac{5121679491673}{18431369558913} a^{10} - \frac{2794395059532}{6143789852971} a^{9} + \frac{2661736405872}{6143789852971} a^{8} + \frac{3414376236688}{18431369558913} a^{7} + \frac{8762775729457}{18431369558913} a^{6} + \frac{755636536238}{6143789852971} a^{5} - \frac{3767992580362}{18431369558913} a^{4} + \frac{8823871356851}{18431369558913} a^{3} - \frac{5010638016127}{18431369558913} a^{2} - \frac{5084089168517}{18431369558913} a + \frac{4764827094445}{18431369558913}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 254333.220281 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_6\times S_4$ (as 18T61):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 144
The 30 conjugacy class representatives for $C_6\times S_4$
Character table for $C_6\times S_4$ is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 3.3.469.1, 6.4.1539727.1, 9.9.247691263309.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }$ ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
7Data not computed
$67$67.3.0.1$x^{3} - x + 16$$1$$3$$0$$C_3$$[\ ]^{3}$
67.3.0.1$x^{3} - x + 16$$1$$3$$0$$C_3$$[\ ]^{3}$
67.6.3.2$x^{6} - 4489 x^{2} + 4812208$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
67.6.3.2$x^{6} - 4489 x^{2} + 4812208$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$