Normalized defining polynomial
\( x^{18} - 6 x^{17} + 101 x^{15} - 390 x^{14} + 459 x^{13} + 1164 x^{12} - 5115 x^{11} + 6198 x^{10} + 5574 x^{9} - 25929 x^{8} + 22929 x^{7} + 16988 x^{6} - 42879 x^{5} + 16926 x^{4} + 14308 x^{3} - 11655 x^{2} + 318 x + 1009 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-41599945090131789253856059611=-\,3^{27}\cdot 73^{4}\cdot 577^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{19} a^{15} - \frac{1}{19} a^{14} + \frac{1}{19} a^{13} + \frac{4}{19} a^{12} - \frac{2}{19} a^{11} - \frac{3}{19} a^{10} - \frac{7}{19} a^{9} + \frac{2}{19} a^{8} - \frac{6}{19} a^{7} - \frac{4}{19} a^{6} + \frac{5}{19} a^{5} + \frac{3}{19} a^{4} - \frac{6}{19} a^{3} + \frac{6}{19} a^{2} + \frac{7}{19} a + \frac{2}{19}$, $\frac{1}{19} a^{16} + \frac{5}{19} a^{13} + \frac{2}{19} a^{12} - \frac{5}{19} a^{11} + \frac{9}{19} a^{10} - \frac{5}{19} a^{9} - \frac{4}{19} a^{8} + \frac{9}{19} a^{7} + \frac{1}{19} a^{6} + \frac{8}{19} a^{5} - \frac{3}{19} a^{4} - \frac{6}{19} a^{2} + \frac{9}{19} a + \frac{2}{19}$, $\frac{1}{111632319252865681379793847} a^{17} - \frac{333730058797560834049738}{111632319252865681379793847} a^{16} + \frac{2158680945407961356155362}{111632319252865681379793847} a^{15} - \frac{2192275026641700373848382}{111632319252865681379793847} a^{14} - \frac{11968837358469351170327794}{111632319252865681379793847} a^{13} + \frac{22950263749788749391650861}{111632319252865681379793847} a^{12} + \frac{41601372550086952921624641}{111632319252865681379793847} a^{11} + \frac{25395234405857242550774437}{111632319252865681379793847} a^{10} - \frac{22521462407798338476682890}{111632319252865681379793847} a^{9} - \frac{33719096784173601137250075}{111632319252865681379793847} a^{8} - \frac{34025723346535229324773071}{111632319252865681379793847} a^{7} - \frac{18200039317831679434475281}{111632319252865681379793847} a^{6} + \frac{49941233305243220715218733}{111632319252865681379793847} a^{5} - \frac{677035764878858187745949}{5875385223835035862094413} a^{4} + \frac{42534187850265331824028876}{111632319252865681379793847} a^{3} - \frac{18831556811371181911515583}{111632319252865681379793847} a^{2} + \frac{38572585549017062244073197}{111632319252865681379793847} a + \frac{24552124001435022470039492}{111632319252865681379793847}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 62896797.1415 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 110 conjugacy class representatives for t18n767 are not computed |
| Character table for t18n767 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 9.9.22384826361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 73 | Data not computed | ||||||
| 577 | Data not computed | ||||||