Normalized defining polynomial
\( x^{18} - 27 x^{16} - 25 x^{15} + 207 x^{14} + 600 x^{13} - 69 x^{12} - 4167 x^{11} - 4620 x^{10} + 12458 x^{9} + 16047 x^{8} - 36273 x^{7} - 81698 x^{6} - 28251 x^{5} + 99588 x^{4} + 152048 x^{3} + 59598 x^{2} - 15093 x - 7267 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-38627573098228816471588288323=-\,3^{18}\cdot 7^{14}\cdot 43^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{41199977727433375353930421894746321397} a^{17} - \frac{730245831734160125745571261753726535}{3169229055956413488763878607288178569} a^{16} + \frac{19279557090840202227759365419190989591}{41199977727433375353930421894746321397} a^{15} + \frac{640776957187703145694467380107156141}{1420688887152875012204497306715390393} a^{14} + \frac{16946171033892423660947864866115814725}{41199977727433375353930421894746321397} a^{13} - \frac{3281134393722362180812474912154771731}{41199977727433375353930421894746321397} a^{12} + \frac{16013634858234045317750724816513601030}{41199977727433375353930421894746321397} a^{11} + \frac{9984276131135711014765636519216136406}{41199977727433375353930421894746321397} a^{10} - \frac{2330648079447544130910248651730919063}{41199977727433375353930421894746321397} a^{9} + \frac{11059830685759426075554696846708340381}{41199977727433375353930421894746321397} a^{8} + \frac{19974407528173509977054596993519328492}{41199977727433375353930421894746321397} a^{7} - \frac{20367095780434991990471049141763362764}{41199977727433375353930421894746321397} a^{6} + \frac{3966278205917034452280147489627170559}{41199977727433375353930421894746321397} a^{5} + \frac{10611472328574325561407514885508948473}{41199977727433375353930421894746321397} a^{4} + \frac{8631887963624084881019153790298265858}{41199977727433375353930421894746321397} a^{3} + \frac{1227243834486799203832605676724180315}{3169229055956413488763878607288178569} a^{2} - \frac{10366592017161278458494862837576895638}{41199977727433375353930421894746321397} a - \frac{1102409572555314847631597068422303470}{3169229055956413488763878607288178569}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 88012551.4345 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1296 |
| The 56 conjugacy class representatives for t18n282 are not computed |
| Character table for t18n282 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.4.103243.1, 9.9.29971914410781.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | $18$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $43$ | 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 43.6.5.6 | $x^{6} + 2539107$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |