Normalized defining polynomial
\( x^{18} - 42 x^{16} - 28 x^{15} + 675 x^{14} + 900 x^{13} - 5181 x^{12} - 10962 x^{11} + 17316 x^{10} + 64040 x^{9} + 6615 x^{8} - 167646 x^{7} - 198527 x^{6} + 61236 x^{5} + 335340 x^{4} + 342144 x^{3} + 174960 x^{2} + 46656 x + 5184 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3796833129811863922362236940288=-\,2^{12}\cdot 3^{31}\cdot 107^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{8} a^{13} + \frac{1}{4} a^{12} + \frac{1}{4} a^{11} + \frac{3}{8} a^{9} + \frac{1}{4} a^{8} - \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{8} a^{3} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{192} a^{14} - \frac{3}{32} a^{12} - \frac{7}{48} a^{11} - \frac{31}{64} a^{10} + \frac{3}{16} a^{9} - \frac{7}{64} a^{8} + \frac{13}{32} a^{7} + \frac{5}{16} a^{6} + \frac{7}{24} a^{5} - \frac{19}{64} a^{4} + \frac{11}{32} a^{3} - \frac{23}{192} a^{2} + \frac{3}{16} a + \frac{7}{16}$, $\frac{1}{4608} a^{15} + \frac{1}{768} a^{14} + \frac{29}{768} a^{13} - \frac{233}{576} a^{12} + \frac{553}{1536} a^{11} + \frac{3}{256} a^{10} - \frac{575}{1536} a^{9} - \frac{7}{32} a^{8} - \frac{11}{32} a^{7} - \frac{17}{144} a^{6} + \frac{157}{1536} a^{5} + \frac{89}{384} a^{4} + \frac{949}{4608} a^{3} + \frac{367}{768} a^{2} - \frac{13}{128} a + \frac{7}{64}$, $\frac{1}{36864} a^{16} - \frac{1}{9216} a^{15} - \frac{13}{6144} a^{14} + \frac{251}{9216} a^{13} - \frac{8501}{36864} a^{12} - \frac{27}{512} a^{11} + \frac{2125}{12288} a^{10} + \frac{787}{6144} a^{9} - \frac{73}{256} a^{8} + \frac{149}{576} a^{7} - \frac{1001}{36864} a^{6} + \frac{673}{6144} a^{5} + \frac{1213}{36864} a^{4} - \frac{1343}{4608} a^{3} + \frac{197}{512} a^{2} + \frac{5}{64} a - \frac{83}{256}$, $\frac{1}{884736} a^{17} - \frac{1}{147456} a^{16} - \frac{1}{147456} a^{15} + \frac{1}{110592} a^{14} + \frac{209}{294912} a^{13} - \frac{53}{16384} a^{12} + \frac{3997}{294912} a^{11} - \frac{2303}{24576} a^{10} - \frac{10277}{24576} a^{9} - \frac{11573}{27648} a^{8} - \frac{141859}{294912} a^{7} - \frac{11183}{36864} a^{6} - \frac{357647}{884736} a^{5} + \frac{72941}{147456} a^{4} + \frac{5051}{12288} a^{3} - \frac{163}{2048} a^{2} - \frac{665}{2048} a + \frac{1}{1024}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1402705898.51 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2592 |
| The 44 conjugacy class representatives for t18n394 |
| Character table for t18n394 is not computed |
Intermediate fields
| 3.3.321.1, 6.4.309123.1, 9.7.1124993796992064.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | $18$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $3$ | 3.6.10.3 | $x^{6} + 36$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ |
| 3.12.21.74 | $x^{12} - 12 x^{11} - 3 x^{10} + 6 x^{9} + 9 x^{7} + 6 x^{6} - 9 x^{5} - 9 x^{4} + 6 x^{3} + 9 x^{2} + 9 x - 6$ | $12$ | $1$ | $21$ | 12T36 | $[9/4, 9/4]_{4}^{2}$ | |
| $107$ | 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 107.6.3.1 | $x^{6} - 214 x^{4} + 11449 x^{2} - 99228483$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 107.6.3.1 | $x^{6} - 214 x^{4} + 11449 x^{2} - 99228483$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |