Normalized defining polynomial
\( x^{18} - 36 x^{16} - 26 x^{15} + 477 x^{14} + 549 x^{13} - 2937 x^{12} - 3690 x^{11} + 11238 x^{10} + 15071 x^{9} - 24876 x^{8} - 37752 x^{7} + 23847 x^{6} + 47241 x^{5} + 435 x^{4} - 20764 x^{3} - 12528 x^{2} - 696 x + 6119 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-37726209720370552017864793923=-\,3^{18}\cdot 7^{15}\cdot 29^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} - \frac{3}{7} a^{11} - \frac{1}{7} a^{10} - \frac{2}{7} a^{9} + \frac{2}{7} a^{8} + \frac{1}{7} a^{6} - \frac{3}{7} a^{4} + \frac{2}{7} a^{3} + \frac{3}{7} a^{2} - \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{13} - \frac{3}{7} a^{11} + \frac{2}{7} a^{10} + \frac{3}{7} a^{9} - \frac{1}{7} a^{8} + \frac{1}{7} a^{7} + \frac{3}{7} a^{6} - \frac{3}{7} a^{5} + \frac{2}{7} a^{3} + \frac{1}{7} a^{2} - \frac{2}{7} a + \frac{3}{7}$, $\frac{1}{7} a^{14} + \frac{3}{7} a^{7} + \frac{3}{7}$, $\frac{1}{49} a^{15} + \frac{2}{49} a^{14} - \frac{3}{49} a^{13} - \frac{3}{49} a^{12} - \frac{17}{49} a^{11} - \frac{24}{49} a^{10} - \frac{10}{49} a^{9} + \frac{1}{7} a^{8} - \frac{4}{49} a^{7} + \frac{23}{49} a^{6} - \frac{12}{49} a^{5} + \frac{2}{49} a^{4} + \frac{2}{49} a^{3} + \frac{23}{49} a^{2} - \frac{9}{49} a + \frac{15}{49}$, $\frac{1}{637} a^{16} + \frac{5}{637} a^{15} + \frac{17}{637} a^{14} + \frac{30}{637} a^{13} + \frac{37}{637} a^{12} - \frac{194}{637} a^{11} + \frac{184}{637} a^{10} + \frac{222}{637} a^{9} - \frac{193}{637} a^{8} - \frac{101}{637} a^{7} + \frac{246}{637} a^{6} + \frac{183}{637} a^{5} - \frac{83}{637} a^{4} + \frac{288}{637} a^{3} - \frac{150}{637} a^{2} + \frac{135}{637} a + \frac{80}{637}$, $\frac{1}{54767852381818486001} a^{17} - \frac{38052350708198017}{54767852381818486001} a^{16} + \frac{97129033098370636}{54767852381818486001} a^{15} + \frac{201541647161859416}{4212911721678345077} a^{14} + \frac{52280066310616601}{1117711273098336449} a^{13} + \frac{553178108085503192}{7823978911688355143} a^{12} + \frac{2444884039222116260}{7823978911688355143} a^{11} + \frac{5245547083933040377}{54767852381818486001} a^{10} - \frac{66456851855039190}{54767852381818486001} a^{9} + \frac{15897392994303861912}{54767852381818486001} a^{8} + \frac{18295315454785408126}{54767852381818486001} a^{7} + \frac{1982004899017463077}{7823978911688355143} a^{6} - \frac{2371849003438427616}{7823978911688355143} a^{5} - \frac{3864865692403484976}{7823978911688355143} a^{4} + \frac{4723807986046339480}{54767852381818486001} a^{3} - \frac{359411411602677552}{54767852381818486001} a^{2} + \frac{12294134979868626791}{54767852381818486001} a - \frac{25390349300180441098}{54767852381818486001}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 134045160.39 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1296 |
| The 56 conjugacy class representatives for t18n282 are not computed |
| Character table for t18n282 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.4.487403.1, 9.9.13632439166829.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | $18$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.9.2 | $x^{9} + 18 x^{3} + 27 x + 27$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $[3/2, 3/2]_{2}^{3}$ |
| 3.9.9.2 | $x^{9} + 18 x^{3} + 27 x + 27$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $[3/2, 3/2]_{2}^{3}$ | |
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.6.5.2 | $x^{6} + 58$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |