Properties

Label 18.12.3653539344...8416.1
Degree $18$
Signature $[12, 3]$
Discriminant $-\,2^{18}\cdot 3^{18}\cdot 7^{13}\cdot 13^{5}$
Root discriminant $49.88$
Ramified primes $2, 3, 7, 13$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T766

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-9512, -38232, -37560, 19416, 20760, -23808, 36276, 88404, 13254, -32614, -4134, 5988, -1027, -849, 357, 79, -33, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^17 - 33*x^16 + 79*x^15 + 357*x^14 - 849*x^13 - 1027*x^12 + 5988*x^11 - 4134*x^10 - 32614*x^9 + 13254*x^8 + 88404*x^7 + 36276*x^6 - 23808*x^5 + 20760*x^4 + 19416*x^3 - 37560*x^2 - 38232*x - 9512)
 
gp: K = bnfinit(x^18 - 3*x^17 - 33*x^16 + 79*x^15 + 357*x^14 - 849*x^13 - 1027*x^12 + 5988*x^11 - 4134*x^10 - 32614*x^9 + 13254*x^8 + 88404*x^7 + 36276*x^6 - 23808*x^5 + 20760*x^4 + 19416*x^3 - 37560*x^2 - 38232*x - 9512, 1)
 

Normalized defining polynomial

\( x^{18} - 3 x^{17} - 33 x^{16} + 79 x^{15} + 357 x^{14} - 849 x^{13} - 1027 x^{12} + 5988 x^{11} - 4134 x^{10} - 32614 x^{9} + 13254 x^{8} + 88404 x^{7} + 36276 x^{6} - 23808 x^{5} + 20760 x^{4} + 19416 x^{3} - 37560 x^{2} - 38232 x - 9512 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-3653539344977096693261726908416=-\,2^{18}\cdot 3^{18}\cdot 7^{13}\cdot 13^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $49.88$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{15} + \frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{16} + \frac{1}{4} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{38635142642329507339846596359876} a^{17} - \frac{4129148521370227465544623568641}{38635142642329507339846596359876} a^{16} - \frac{843371014075061172540040154202}{9658785660582376834961649089969} a^{15} + \frac{1373720004886555509155140690055}{38635142642329507339846596359876} a^{14} + \frac{6795268939637107413379199012599}{38635142642329507339846596359876} a^{13} - \frac{1386929878535817134768906729659}{38635142642329507339846596359876} a^{12} - \frac{5210028871272228867658797011671}{38635142642329507339846596359876} a^{11} - \frac{3139564560633287930552666200947}{19317571321164753669923298179938} a^{10} - \frac{7864940485959247619178508898387}{19317571321164753669923298179938} a^{9} + \frac{6064858982970653000069280536877}{38635142642329507339846596359876} a^{8} - \frac{3586400605946689491949961059245}{9658785660582376834961649089969} a^{7} + \frac{1022730101652945519224955535542}{9658785660582376834961649089969} a^{6} - \frac{3926895360003184454927320563085}{19317571321164753669923298179938} a^{5} - \frac{294947849951609603519409673113}{9658785660582376834961649089969} a^{4} + \frac{2610793811238426798470092305934}{9658785660582376834961649089969} a^{3} - \frac{790488594936583020974441354873}{9658785660582376834961649089969} a^{2} - \frac{2189327629462988744371312373108}{9658785660582376834961649089969} a + \frac{4457354776215044427187443557974}{9658785660582376834961649089969}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1143060798.0 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T766:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 82944
The 144 conjugacy class representatives for t18n766 are not computed
Character table for t18n766 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 9.9.25046451847872.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ R $18$ R ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.12.18.64$x^{12} + 14 x^{11} + 12 x^{10} + 4 x^{9} + 10 x^{8} + 4 x^{6} + 8 x^{5} + 8 x^{4} + 16 x - 8$$4$$3$$18$12T51$[2, 2, 2, 2]^{6}$
3Data not computed
$7$7.6.5.5$x^{6} + 56$$6$$1$$5$$C_6$$[\ ]_{6}$
7.12.8.1$x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$
$13$13.3.0.1$x^{3} - 2 x + 6$$1$$3$$0$$C_3$$[\ ]^{3}$
13.3.0.1$x^{3} - 2 x + 6$$1$$3$$0$$C_3$$[\ ]^{3}$
13.6.5.1$x^{6} - 52$$6$$1$$5$$C_6$$[\ ]_{6}$
13.6.0.1$x^{6} + x^{2} - 2 x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$