Normalized defining polynomial
\( x^{18} - 2 x^{17} + 5 x^{16} - 40 x^{15} - 266 x^{14} + 255 x^{13} - 300 x^{12} + 9132 x^{11} + 17814 x^{10} + 9355 x^{9} - 184219 x^{8} - 600376 x^{7} + 1205481 x^{6} + 2196473 x^{5} - 3497873 x^{4} - 2434847 x^{3} + 3889164 x^{2} + 444781 x - 1012607 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-34316371298286047031542175649181696=-\,2^{12}\cdot 7^{12}\cdot 37^{9}\cdot 167^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 37, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{13611} a^{16} + \frac{98}{1047} a^{15} + \frac{394}{4537} a^{14} - \frac{94}{13611} a^{13} - \frac{1302}{4537} a^{12} + \frac{1036}{4537} a^{11} + \frac{125}{4537} a^{10} - \frac{5503}{13611} a^{9} - \frac{6206}{13611} a^{8} - \frac{2435}{13611} a^{7} - \frac{57}{349} a^{6} + \frac{6098}{13611} a^{5} + \frac{1822}{4537} a^{4} - \frac{3433}{13611} a^{3} - \frac{2861}{13611} a^{2} - \frac{319}{4537} a - \frac{5399}{13611}$, $\frac{1}{60640896607743580056983441141895638367274305574557} a^{17} - \frac{887076080310552225031945174637300446880668192}{60640896607743580056983441141895638367274305574557} a^{16} + \frac{6297351971377554305571823069555436334713808146704}{60640896607743580056983441141895638367274305574557} a^{15} - \frac{2191991160176157512352080820613558121235578274404}{20213632202581193352327813713965212789091435191519} a^{14} - \frac{3875483605495042925506360888305113245487195047541}{60640896607743580056983441141895638367274305574557} a^{13} + \frac{14329117241363023234152743265841229894960056198483}{60640896607743580056983441141895638367274305574557} a^{12} - \frac{5976463764268847276292136919763156791724906715445}{60640896607743580056983441141895638367274305574557} a^{11} - \frac{8441683519424846477619065317875487705358425080470}{60640896607743580056983441141895638367274305574557} a^{10} + \frac{3432128387179099350305393653144625422120672458199}{60640896607743580056983441141895638367274305574557} a^{9} + \frac{7547590598551281807276598559363571883046141688686}{60640896607743580056983441141895638367274305574557} a^{8} - \frac{10115595883127265954259303109613936805443348484076}{60640896607743580056983441141895638367274305574557} a^{7} + \frac{8403376714720014518951907109491093014834027885561}{20213632202581193352327813713965212789091435191519} a^{6} + \frac{4916217550891381505356523590683111617232849770153}{20213632202581193352327813713965212789091435191519} a^{5} + \frac{20637979067406341079411635372416339603338894833870}{60640896607743580056983441141895638367274305574557} a^{4} + \frac{8953188967856019209815892516462486246188290085933}{20213632202581193352327813713965212789091435191519} a^{3} + \frac{135428674431599851340724938769176757300032871973}{625163882554057526360654032390676684198704181181} a^{2} - \frac{8758255667696753133984459226047326399458681827074}{60640896607743580056983441141895638367274305574557} a + \frac{25668619810104116574618566640172963845240985845179}{60640896607743580056983441141895638367274305574557}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 87278650108.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 576 |
| The 40 conjugacy class representatives for t18n176 |
| Character table for t18n176 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 3.3.148.1, 9.9.381393587008.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $37$ | 37.6.0.1 | $x^{6} - x + 20$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 37.12.9.2 | $x^{12} - 74 x^{8} + 1369 x^{4} - 202612$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 167 | Data not computed | ||||||