Normalized defining polynomial
\( x^{18} - 282 x^{16} - 81 x^{15} + 30573 x^{14} + 19035 x^{13} - 1691363 x^{12} - 1650942 x^{11} + 52473594 x^{10} + 69759576 x^{9} - 929489589 x^{8} - 1567080027 x^{7} + 8940334692 x^{6} + 18640096488 x^{5} - 38446060107 x^{4} - 105013654389 x^{3} + 16399770624 x^{2} + 190236600000 x + 160450882048 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-339950532437525196503095670644116172570319799573619=-\,11^{6}\cdot 13\cdot 43^{9}\cdot 45337^{3}\cdot 68053^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $641.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 13, 43, 45337, 68053$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} + \frac{1}{3} a^{5} + \frac{1}{6} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{18} a^{12} - \frac{1}{18} a^{10} - \frac{1}{6} a^{9} - \frac{1}{9} a^{8} + \frac{1}{9} a^{6} - \frac{1}{3} a^{5} - \frac{1}{18} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a - \frac{4}{9}$, $\frac{1}{36} a^{13} - \frac{1}{36} a^{12} - \frac{1}{36} a^{11} + \frac{1}{36} a^{10} - \frac{5}{36} a^{9} - \frac{1}{36} a^{8} - \frac{1}{36} a^{7} - \frac{1}{18} a^{6} - \frac{1}{36} a^{5} + \frac{1}{9} a^{4} - \frac{1}{12} a^{3} + \frac{5}{12} a^{2} + \frac{1}{36} a - \frac{4}{9}$, $\frac{1}{36} a^{14} + \frac{1}{12} a^{7} + \frac{1}{36} a^{6} + \frac{1}{12} a^{5} - \frac{13}{36} a^{4} - \frac{1}{2} a^{3} - \frac{1}{18} a^{2} + \frac{1}{12} a + \frac{1}{9}$, $\frac{1}{180} a^{15} + \frac{1}{90} a^{13} - \frac{7}{90} a^{11} + \frac{1}{15} a^{10} - \frac{1}{45} a^{9} - \frac{1}{60} a^{8} - \frac{5}{36} a^{7} + \frac{1}{12} a^{6} - \frac{29}{60} a^{5} - \frac{1}{15} a^{4} - \frac{13}{90} a^{3} - \frac{29}{60} a^{2} - \frac{1}{10} a + \frac{1}{15}$, $\frac{1}{360} a^{16} + \frac{1}{180} a^{14} - \frac{1}{72} a^{13} + \frac{1}{360} a^{12} - \frac{13}{360} a^{11} - \frac{19}{360} a^{10} - \frac{19}{180} a^{9} - \frac{1}{36} a^{8} + \frac{1}{18} a^{7} - \frac{19}{120} a^{6} + \frac{173}{360} a^{5} - \frac{22}{45} a^{4} + \frac{7}{15} a^{3} - \frac{7}{40} a^{2} + \frac{127}{360} a - \frac{1}{3}$, $\frac{1}{2734572280246265633611384416910693840155423114246482364471774154357440} a^{17} + \frac{242704779539809519759937450476435299919324235709052967772519824657}{341821535030783204201423052113836730019427889280810295558971769294680} a^{16} + \frac{1182641764637355133484601871696059168530119355053509796915942221787}{1367286140123132816805692208455346920077711557123241182235887077178720} a^{15} + \frac{354210568512426777845371531819123487611523476525669991979040564939}{210351713865097356431644955146976449242724854942037104959367242642880} a^{14} - \frac{821721561143037823894524235087994823984045717829853647458185041583}{546914456049253126722276883382138768031084622849296472894354830871488} a^{13} + \frac{1616105890102195632258401640099945797389231150292945176334051141041}{911524093415421877870461472303564613385141038082160788157258051452480} a^{12} + \frac{17145497042365988788381105295509976929587284952363802820341124784641}{546914456049253126722276883382138768031084622849296472894354830871488} a^{11} - \frac{36145764598855528797014120271083729498656699155163494398377282791553}{455762046707710938935230736151782306692570519041080394078629025726240} a^{10} - \frac{3138499868140411088654174644994416907902524955211597789788038993077}{35058618977516226071940825857829408207120809157006184159894540440480} a^{9} + \frac{14070721689646927832340053132438892213581697032343588272410075349513}{341821535030783204201423052113836730019427889280810295558971769294680} a^{8} + \frac{260231364863709792042150384540287036219769556034744092131086082643163}{2734572280246265633611384416910693840155423114246482364471774154357440} a^{7} - \frac{134476303613602002513892146390231780875637052380610555768003736852033}{911524093415421877870461472303564613385141038082160788157258051452480} a^{6} + \frac{94402645263584770920819096493085153758738644853004185060357483897549}{227881023353855469467615368075891153346285259520540197039314512863120} a^{5} + \frac{3280819693032182879884245328222273121887344202342001652181312406959}{37980170558975911577935894679315192224380876586756699506552418810520} a^{4} + \frac{197007190962210260913764275821204729158990567266104551227663077163511}{911524093415421877870461472303564613385141038082160788157258051452480} a^{3} + \frac{106855453632807155499406752407937983320605922602246240917096577890455}{546914456049253126722276883382138768031084622849296472894354830871488} a^{2} - \frac{134689113931867017438575063182491546070030743956443646096393082958513}{341821535030783204201423052113836730019427889280810295558971769294680} a - \frac{19698687205903534501919198168353531591807190499371779264946388996224}{42727691878847900525177881514229591252428486160101286944871471161835}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6422148732460000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2239488 |
| The 255 conjugacy class representatives for t18n945 are not computed |
| Character table for t18n945 is not computed |
Intermediate fields
| 3.3.473.1, 6.4.29681838048464767.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | R | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | $18$ | $18$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $43$ | 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 43.6.3.1 | $x^{6} - 86 x^{4} + 1849 x^{2} - 7950700$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 45337 | Data not computed | ||||||
| 68053 | Data not computed | ||||||