Normalized defining polynomial
\( x^{18} - 3 x^{17} - 6 x^{16} + 64 x^{15} - 179 x^{14} - 413 x^{13} + 2165 x^{12} + 116 x^{11} - 9155 x^{10} + 6214 x^{9} + 16744 x^{8} - 18364 x^{7} - 12595 x^{6} + 19075 x^{5} + 3041 x^{4} - 7577 x^{3} + 216 x^{2} + 832 x - 7 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-328498943730005017710048643698688=-\,2^{12}\cdot 13^{9}\cdot 229^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{13} a^{16} + \frac{6}{13} a^{15} + \frac{1}{13} a^{14} - \frac{1}{13} a^{13} - \frac{1}{13} a^{12} + \frac{2}{13} a^{11} - \frac{6}{13} a^{10} - \frac{6}{13} a^{9} + \frac{4}{13} a^{8} + \frac{6}{13} a^{7} - \frac{4}{13} a^{6} - \frac{1}{13} a^{5} - \frac{1}{13} a^{4} + \frac{3}{13} a^{3} - \frac{5}{13} a^{2} - \frac{2}{13} a + \frac{4}{13}$, $\frac{1}{1151682909415058921889834599} a^{17} - \frac{40673104557675704693864226}{1151682909415058921889834599} a^{16} + \frac{483585827878874735362887000}{1151682909415058921889834599} a^{15} - \frac{10198269047147006297638003}{88590993031927609376141123} a^{14} + \frac{365130434653939372183983137}{1151682909415058921889834599} a^{13} + \frac{305888708920862553979434904}{1151682909415058921889834599} a^{12} + \frac{50641187297986265746492697}{1151682909415058921889834599} a^{11} - \frac{299942451660850460789563872}{1151682909415058921889834599} a^{10} - \frac{563075665220586441529270199}{1151682909415058921889834599} a^{9} - \frac{357631878913881203196565653}{1151682909415058921889834599} a^{8} + \frac{216995864707682127411075643}{1151682909415058921889834599} a^{7} + \frac{556419968098640952785142880}{1151682909415058921889834599} a^{6} + \frac{200359101691524402922873797}{1151682909415058921889834599} a^{5} - \frac{541161763721708394174321826}{1151682909415058921889834599} a^{4} - \frac{344508958020398591596338411}{1151682909415058921889834599} a^{3} - \frac{339613174252072778711182198}{1151682909415058921889834599} a^{2} + \frac{301363594547441183309831242}{1151682909415058921889834599} a - \frac{434010113987994513548988925}{1151682909415058921889834599}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13289554399.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 88 conjugacy class representatives for t18n656 are not computed |
| Character table for t18n656 is not computed |
Intermediate fields
| 3.3.229.1, 9.9.78544420275841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | $18$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.12.12.1 | $x^{12} - 48 x^{10} + 49 x^{8} + 8 x^{6} + 19 x^{4} - 24 x^{2} + 59$ | $2$ | $6$ | $12$ | 12T134 | $[2, 2, 2, 2, 2, 2]^{6}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 229 | Data not computed | ||||||