Normalized defining polynomial
\( x^{18} - 3 x^{17} - 23 x^{16} + 36 x^{15} + 184 x^{14} + 304 x^{13} - 1434 x^{12} - 3157 x^{11} + 4412 x^{10} + 13908 x^{9} - 5052 x^{8} - 33258 x^{7} - 507 x^{6} + 42503 x^{5} + 5358 x^{4} - 27709 x^{3} - 1646 x^{2} + 5453 x + 692 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-328498943730005017710048643698688=-\,2^{12}\cdot 13^{9}\cdot 229^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{13} a^{16} + \frac{6}{13} a^{15} - \frac{6}{13} a^{14} - \frac{6}{13} a^{13} + \frac{1}{13} a^{12} + \frac{2}{13} a^{11} + \frac{3}{13} a^{10} - \frac{6}{13} a^{9} - \frac{4}{13} a^{8} + \frac{2}{13} a^{7} + \frac{2}{13} a^{6} + \frac{5}{13} a^{5} - \frac{3}{13} a^{4} + \frac{2}{13} a^{3} + \frac{1}{13} a^{2} - \frac{6}{13} a + \frac{5}{13}$, $\frac{1}{10311541255598777894940124476483359} a^{17} - \frac{107570746271014353689559153556635}{10311541255598777894940124476483359} a^{16} + \frac{3635700931323828391943417056093726}{10311541255598777894940124476483359} a^{15} + \frac{1458528656279326539371253424775887}{10311541255598777894940124476483359} a^{14} - \frac{320627909802731171578274169091834}{793195481199905991918471113575643} a^{13} + \frac{327993580545695119197457717925014}{793195481199905991918471113575643} a^{12} + \frac{5011677390929747003023618432975030}{10311541255598777894940124476483359} a^{11} - \frac{3147995722537694677952610097780183}{10311541255598777894940124476483359} a^{10} - \frac{4218984949157109750610364170733473}{10311541255598777894940124476483359} a^{9} + \frac{2391246866192364389146547641357063}{10311541255598777894940124476483359} a^{8} + \frac{483609303189748770040142365560732}{10311541255598777894940124476483359} a^{7} + \frac{3941361894214741853610404707339193}{10311541255598777894940124476483359} a^{6} + \frac{373871678585969986513927718844402}{793195481199905991918471113575643} a^{5} - \frac{1217143735510589531719513510848457}{10311541255598777894940124476483359} a^{4} + \frac{2346033401057928275445729102252345}{10311541255598777894940124476483359} a^{3} + \frac{2896893829293563669174494976889899}{10311541255598777894940124476483359} a^{2} + \frac{658703052237396293093121358828382}{10311541255598777894940124476483359} a + \frac{1734211443651609068112356049907302}{10311541255598777894940124476483359}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31948544495.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 88 conjugacy class representatives for t18n656 are not computed |
| Character table for t18n656 is not computed |
Intermediate fields
| 3.3.229.1, 9.9.78544420275841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | $18$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.12.12.21 | $x^{12} + 44 x^{10} + 45 x^{8} - 48 x^{6} + 59 x^{4} - 60 x^{2} + 23$ | $2$ | $6$ | $12$ | 12T134 | $[2, 2, 2, 2, 2, 2]^{6}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.12.8.1 | $x^{12} - 39 x^{9} - 338 x^{6} + 10985 x^{3} + 228488$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| 229 | Data not computed | ||||||