Normalized defining polynomial
\( x^{18} - 3 x^{17} - 23 x^{16} + 68 x^{15} + 28 x^{14} - 256 x^{13} + 980 x^{12} - 884 x^{11} - 3545 x^{10} + 5383 x^{9} - 2809 x^{8} - 4572 x^{7} + 20028 x^{6} - 4076 x^{5} - 10010 x^{4} + 3522 x^{3} + 691 x^{2} - 375 x + 29 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-298302088774055758450130944000000=-\,2^{24}\cdot 5^{6}\cdot 53^{4}\cdot 229^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 53, 229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{52} a^{16} + \frac{3}{26} a^{15} + \frac{3}{26} a^{14} - \frac{1}{26} a^{13} - \frac{5}{26} a^{12} + \frac{4}{13} a^{11} - \frac{1}{13} a^{10} + \frac{3}{26} a^{9} - \frac{11}{52} a^{8} + \frac{3}{13} a^{7} - \frac{2}{13} a^{6} + \frac{11}{26} a^{5} - \frac{5}{26} a^{4} - \frac{5}{26} a^{3} + \frac{1}{13} a^{2} + \frac{3}{13} a - \frac{3}{52}$, $\frac{1}{1198499265085437981219227568076} a^{17} + \frac{280574054949386920841186381}{1198499265085437981219227568076} a^{16} - \frac{30437816811636769484674419249}{599249632542718990609613784038} a^{15} + \frac{4985267172108976821302228287}{23048062790104576561908222463} a^{14} + \frac{39133224612754246566915358697}{599249632542718990609613784038} a^{13} + \frac{144687517543955324274748891611}{599249632542718990609613784038} a^{12} + \frac{82942750195430036948396675818}{299624816271359495304806892019} a^{11} - \frac{238992402092694572074004285087}{599249632542718990609613784038} a^{10} + \frac{408373437356073364529515123317}{1198499265085437981219227568076} a^{9} - \frac{362500484179187001392268154341}{1198499265085437981219227568076} a^{8} + \frac{19068022115325499041168742818}{299624816271359495304806892019} a^{7} + \frac{8026505098515434160548833605}{85607090363245570087087683434} a^{6} + \frac{35975585602147326172544207509}{599249632542718990609613784038} a^{5} - \frac{6200468037079935596921335091}{42803545181622785043543841717} a^{4} + \frac{11988282360527278476235941801}{42803545181622785043543841717} a^{3} + \frac{69432002355439753838286750960}{299624816271359495304806892019} a^{2} + \frac{72308391282457167327517844819}{171214180726491140174175366868} a - \frac{511684801279702534515774188681}{1198499265085437981219227568076}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17649980771.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 168 conjugacy class representatives for t18n835 are not computed |
| Character table for t18n835 is not computed |
Intermediate fields
| 3.3.229.1, 9.9.269866000808000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | $18$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.20.31 | $x^{12} + 4 x^{10} + x^{8} - x^{4} + 4 x^{2} + 3$ | $6$ | $2$ | $20$ | 12T135 | $[4/3, 4/3, 2, 2, 8/3, 8/3]_{3}^{2}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 53 | Data not computed | ||||||
| 229 | Data not computed | ||||||