Normalized defining polynomial
\( x^{18} - 18 x^{16} - 24 x^{15} - 27 x^{14} + 288 x^{13} + 1524 x^{12} - 3141 x^{10} - 4416 x^{9} - 9882 x^{8} + 14328 x^{7} + 14583 x^{6} - 17280 x^{5} + 18072 x^{4} + 7680 x^{3} - 29376 x^{2} + 8704 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-295535253012026694638815126273130496=-\,2^{39}\cdot 3^{42}\cdot 17^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{5}$, $\frac{1}{128} a^{14} - \frac{1}{64} a^{12} + \frac{1}{16} a^{11} + \frac{5}{128} a^{10} - \frac{1}{4} a^{9} + \frac{1}{32} a^{8} - \frac{5}{128} a^{6} - \frac{21}{64} a^{4} - \frac{5}{16} a^{3} - \frac{41}{128} a^{2} + \frac{1}{16}$, $\frac{1}{512} a^{15} - \frac{1}{256} a^{13} - \frac{3}{64} a^{12} + \frac{5}{512} a^{11} + \frac{1}{16} a^{10} + \frac{17}{128} a^{9} - \frac{69}{512} a^{7} - \frac{1}{8} a^{6} + \frac{11}{256} a^{5} - \frac{1}{64} a^{4} + \frac{23}{512} a^{3} + \frac{1}{4} a^{2} - \frac{31}{64} a$, $\frac{1}{32768} a^{16} + \frac{27}{16384} a^{14} - \frac{3}{4096} a^{13} + \frac{3861}{32768} a^{12} - \frac{45}{1024} a^{11} + \frac{247}{8192} a^{10} - \frac{21}{128} a^{9} + \frac{2459}{32768} a^{8} + \frac{27}{512} a^{7} + \frac{1663}{16384} a^{6} + \frac{959}{4096} a^{5} - \frac{8089}{32768} a^{4} + \frac{169}{512} a^{3} + \frac{569}{2048} a^{2} + \frac{55}{512}$, $\frac{1}{17028280786114133859565568} a^{17} - \frac{17600970919690518321}{2128535098264266732445696} a^{16} - \frac{7175229317040708484837}{8514140393057066929782784} a^{15} - \frac{7803774446805530972185}{2128535098264266732445696} a^{14} - \frac{1689821608541546194112555}{17028280786114133859565568} a^{13} + \frac{229334341491892414513863}{2128535098264266732445696} a^{12} + \frac{425071856431773252951735}{4257070196528533464891392} a^{11} - \frac{64258929778564971736991}{532133774566066683111424} a^{10} + \frac{1307379728638074272414107}{17028280786114133859565568} a^{9} + \frac{330752788726160054724141}{2128535098264266732445696} a^{8} - \frac{1222732258369687325993345}{8514140393057066929782784} a^{7} - \frac{221664032598250355949599}{2128535098264266732445696} a^{6} + \frac{3255089222040613860862119}{17028280786114133859565568} a^{5} - \frac{82346830860505343888367}{2128535098264266732445696} a^{4} - \frac{149083927380289422567175}{1064267549132133366222848} a^{3} + \frac{14814721459844557043635}{133033443641516670777856} a^{2} + \frac{96469242447032387919991}{266066887283033341555712} a + \frac{4107071609265672254849}{33258360910379167694464}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 362809636594 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 279936 |
| The 159 conjugacy class representatives for t18n857 are not computed |
| Character table for t18n857 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{9})^+\), 6.6.3359232.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | $18$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.12.30.107 | $x^{12} - 6 x^{10} - 3 x^{8} + 20 x^{6} + 3 x^{4} - 14 x^{2} + 7$ | $4$ | $3$ | $30$ | 12T134 | $[2, 2, 2, 3, 7/2, 7/2, 7/2]^{3}$ | |
| 3 | Data not computed | ||||||
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |