Normalized defining polynomial
\( x^{18} - 6 x^{17} - 12 x^{16} + 112 x^{15} + 45 x^{14} - 636 x^{13} - 2154 x^{12} + 9516 x^{11} - 2901 x^{10} - 14942 x^{9} - 12654 x^{8} + 51144 x^{7} + 12255 x^{6} - 93876 x^{5} + 68694 x^{4} - 14304 x^{3} - 948 x^{2} + 264 x - 10 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-28788699841206261734974005706752=-\,2^{30}\cdot 3^{24}\cdot 37^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{14} a^{15} + \frac{3}{14} a^{14} - \frac{3}{14} a^{13} + \frac{1}{14} a^{12} - \frac{3}{14} a^{11} - \frac{3}{14} a^{10} - \frac{1}{14} a^{9} + \frac{5}{14} a^{8} - \frac{2}{7} a^{7} - \frac{1}{7} a^{6} + \frac{2}{7} a^{5} - \frac{1}{7} a^{4} - \frac{2}{7} a^{3} + \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{28} a^{16} - \frac{5}{28} a^{14} - \frac{1}{7} a^{13} - \frac{3}{14} a^{12} - \frac{2}{7} a^{11} - \frac{3}{14} a^{10} + \frac{2}{7} a^{9} - \frac{5}{28} a^{8} - \frac{1}{7} a^{7} - \frac{11}{28} a^{6} - \frac{3}{7} a^{4} + \frac{3}{7} a^{3} + \frac{1}{14} a^{2} - \frac{1}{7} a - \frac{3}{14}$, $\frac{1}{59650086547268508397723484} a^{17} - \frac{19927482948523152123146}{14912521636817127099430871} a^{16} - \frac{1965475802049597032669015}{59650086547268508397723484} a^{15} + \frac{5491579874123499178857645}{29825043273634254198861742} a^{14} - \frac{1543382396775320393418365}{14912521636817127099430871} a^{13} - \frac{821786147115309552108830}{14912521636817127099430871} a^{12} - \frac{654457278429723804779624}{14912521636817127099430871} a^{11} - \frac{356060257028982434425984}{2130360233831018157061553} a^{10} - \frac{22389418970022733225551663}{59650086547268508397723484} a^{9} - \frac{11443569843258629594689}{14912521636817127099430871} a^{8} - \frac{26279469761997589294316443}{59650086547268508397723484} a^{7} - \frac{176737134105794664037557}{1028449768056353593064198} a^{6} + \frac{4186408996716608327080232}{14912521636817127099430871} a^{5} - \frac{6482454836854702167092042}{14912521636817127099430871} a^{4} + \frac{6345702121533375011773025}{29825043273634254198861742} a^{3} + \frac{6467293663396938496890155}{14912521636817127099430871} a^{2} - \frac{3588992841980043427414377}{29825043273634254198861742} a - \frac{3060148218900594846162015}{14912521636817127099430871}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28461563302.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 55296 |
| The 120 conjugacy class representatives for t18n734 are not computed |
| Character table for t18n734 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.220521111330816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ |
| 2.6.8.4 | $x^{6} + 2 x^{3} + 2 x^{2} + 2$ | $6$ | $1$ | $8$ | $S_4\times C_2$ | $[4/3, 4/3, 2]_{3}^{2}$ | |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| 37 | Data not computed | ||||||